The Book of Visual Studio .NET—A Guide
for Developers

Robert B. Dunaway

NO STARCH PRESS

San Francisco

Copyright © 2002 Robert B. Dunaway

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copyright
owner and the publisher.

12345678910-0504 0302

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Editorial Director: Karol Jurado

Cover and Interior Design: Octopod Studios
Composition: 1106 Design, LLC
Developmental Editor: William Pollock
Copyeditor: Kenyon Brown

Proofreader: Mei Levenson

Indexer: Broccoli Information Management

Distributed to the book trade in the United States by Publishers Group West, 1700 Fourth
Street, Berkeley, CA 94710; phone: 800-788-3123; fax: 510-658-1834.

Distributed to the book trade in Canada by Jacqueline Gross & Associates, Inc., One Atlantic
Avenue, Suite 105, Toronto, Ontario M6K 3E7 Canada; phone: 416-531-6737; fax 416-531-
4259.

For information on translations or book distributors outside the United States and Canada,
please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415-863-9900; fax: 415-863-9950; info(@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an "As Is" basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

Library of Congress Cataloguing-in-Publication Data

Dunaway, Robert B.

The book of Visual Studio .NET/Robert B. Dunaway.
p. cm.

Includes index.

1-886411-69-7

(pbk.)

1. Microsoft Visual Studio. 2. Microsoft.net framework. 3. Web
site development--Computer programs. I. Title.
TK5105.8885.M57 D86 2002

005.2'76--dc21 2001030346

Dedication

To Tamarah:
Your steadfast love has inspired me to become a better man.
I love you.

To my Grandfather:
The principles and love you have shown me remain.
[miss you.

ACKNOWLEDGMENTS
This book is the product of a combined effort. My thanks to all involved at No Starch Press.

I would like to thank Bill Pollock for believing in me as a first time writer and for his patience
throughout the writing of this book. Thank you for the countless hours you spent guiding and
editing my work so that it would be more enjoyable and understandable to read.

Special thanks to Karol Jurado, the Editorial Director, for coordinating the entire effort and
fielding my many questions. You've help make this an experience I would like to repeat.

I would also like to thank Ken Brown, the copyeditor, and Mei Levenson, our proofreader. I
know that catching my grammatical errors is no trivial task.

Special thanks to William H. Bennethum, whose friendship, criticism, and encouragement
means the world to me. Your comments and insight concerning this book have been
invaluable.

Thanks to Cheryl and Jeffery Dunaway, for your love and for teaching me that nothing was
out of my reach.

Thanks to Michael and Cathy Browning, for your guidance in my career and your continued
support.

Special thanks to my Grandmother, Maude Jump, for your continued love and support.

Robert B. Dunaway
Cincinnati, Ohio

Introduction: Introducing .NET

When designing the contents, format, and general layout of this book, the challenges that
developers face when implementing Microsoft .NET technologies were considered. The .NET
initiative offers both a new set of technologies and a new paradigm for development, because
it is not only a development environment but also an entire suite of servers and services that
work together to deliver solutions to solve today's business problems. The book could have
perhaps more easily addressed a single vertical portion of the .NET suite of technologies, but
then how would you know how or where that portion fits into .NET model, and how could
you take advantage of other services that are provided by the vast set of .NET technologies?
The truth is that you probably could not.

One book simply cannot adequately cover all of the technologies that are required to deliver a
complete .NET solution. .NET encompasses several new technologies, including new
versions and enhancements of nearly every current technology. These products include SQL
Server, Windows XP, .NET Enterprise Server, and industry-standard technologies such as
XML and SOAP.

This book provides you with a solid understanding of Visual Studio .NET and of how to use it
to implement a variety of .NET solutions (a considerable challenge, given the number of
technologies that make up the .NET framework). You'll focus mainly on Visual Studio 7
NET, while still getting an overview of several .NET-related technologies. In fact, you'll get
quite a bit more than a simple overview of Visual Studio .NET and related technologies;
you'll learn exactly where each technology fits into the big picture of .NET, and you'll run
sample code that demonstrates your ability to take advantage of that technology today! Good
luck and enjoy.

Level of Expertise

The Book of Visual Studio .NET assumes that you are familiar with Windows-based
programming, object-oriented programming, Windows 2000 Advanced Server, Windows XP,
or .NET Enterprise Server. It will also be helpful for you to understand SQL Server, COM,
and COM+ because they are required to build a scalable and reliable Windows DNA
application. Knowing these technologies will make the transition to the .NET Framework
easier for you to handle. While the book assumes this knowledge, it will discuss much of this
technology throughout because of the way .NET integrates it to build business solutions. If
you are lacking in any one of these areas, do not fear; you won't be by the time you finish this
book.

Note While many of the examples are written in Visual Basic (VB), and the book has
included a chapter on Visual Basic .NET, don't expect to learn Visual Basic .NET here.
If you already know Visual Basic, you will be better able to take advantage of these
code examples. If not, you will get an introduction to areas of Visual Basic .NET that
you will need to explore in a book that is geared more toward learning the Visual Basic
NET language.

Who Should Read This Book?

This book is only a starting point for understanding the .NET suite of technologies, which is
essential for any successful .NET delivery. Once you are finished with this book, you will be
able to relate whatever you are doing to some portion of the NET framework.

The Book of Visual Studio .NET is for intermediate and advanced developers who want to
build scalable, reliable, flexible, and manageable systems using Visual Studio .NET. If you
are a developer, an architect, or a manager of a software development team, this book is for
you.

You will also find this book helpful if you aspire to become a software architect with an
understanding of how the pieces of .NET technology fit together to form a business solution.

Finally, while every development manager does not need to understand the details of
COM-+/Enterprise Services, ASP.NET, ADO.NET, or SOAP/Web Services, an understanding
of the issues that are involved in integrating multiple .NET technologies will enable you to
better lead your team. You will be better prepared to deal with the complexities of the next
wave of software development for both the Internet and the desktop.

Goals of This Book

This book does not take an exhaustive look at any one language or technology. While you will
gain new insights into these technologies, you will not learn the technologies themselves.

You will, however, learn to use Visual Studio .NET to implement a variety of NET
technologies as we take an exhaustive look at the .NET Framework. The book covers many
new and updated .NET tools (with tutorial-like examples of how to use them). As you learn,
you will see, in great detail, the process of building compiled components has significantly
changed compared to how classic COM has been implemented. The book also discusses how
languages have been enhanced and DLLs changed. Finally, the book examines a variety of
nuances introduced by .NET and Visual Studio .NET.

By the end of this book, you should have a firm grasp on what this new world of .NET
development technology is all about. You will be able to answer the question, "What is
NET?" with confidence, and communicate the benefits of .NET. But more importantly, you
will be able to use all of the .NET tools and implement other .NET technologies by using
Visual Studio .NET.

Chapter 1: Why .NET

NET, like any other technology, must be carefully evaluated before an educated decision can
be made concerning its use. Before we continue discussing the values of .NET we will briefly
look at how problems can be solved using .NET.

Business Problems Addressed by .NET

Many Internet solutions have been patterned after the mainframe's centralized model. New
technologies in the PC world, such as transaction support and messaging, are mature
technologies in the mainframe world, and in many ways, the mainframe has paved the way for
the Internet. However, it is important to understand that the mainframe, while incorporating
many technologies, leans toward centralization. In this chapter we will cover key architectural
designs leading to today's application designs as they are implemented using .NET.

In many ways, the PC world itself has made a few paradigm shifts as it has moved from
computing on separate, unconnected workstations to the PC network and a client/server
relationship. Network file and print servers provided a way to share information and a single
point of administration. The addition of file services turned the PC into an application server.

The birth of client/server computing helped to reduce the workload on the client PC and to
increase performance and reliability. Rather than relying on the client application to
manipulate and manage its own e-mail files, services ensures that the client's responsibilities
are limited to requests and replies while the server does the work, thus improving reliability
because the PC could no longer damage its own data in the event of a crash.

The first PC networks involved file and print servers with a centralized means of sharing
information and a single point of administration, as shown in Figure 1-1. The server simply
serves the files required to run an application. This is a client/server model only in the context
of file and print services; the application itself isn't really a true client/server application, and
it only takes advantage of certain client/server services that are needed to run the application
from a central location.

This is an ecemple of the old Client Cortmded mocs whenn the
ol menegEs e appicelion wide (he e server marsly
mairkang e aostence and swslebdity of Kas suppoting the
L]

T, Tha Chon; coans @ aendsabnn fisp
[3

2. Tha chan maripulates (he 1
>

B, Trep Chieti] porl i QU i Mantenanoe
-

A Tri chistil CHOEeS The Bopboaton e 0000 ||

Figure 1-1: This diagram represents the old client-controlled model.

The problems with this centralized computing model range from loss of performance to data
corruption. Performance is slow because the client application must do all the work necessary
to make the application functional, with the network as intermediary. Due to the ever-present
risk of client instability, the potential for data corruption is also high. If the client fails while
handling files on the file server, it can easily corrupt application or data files.

The true client/server model, shown in Figure 1-2, never allows the client to actually touch the
application or data. The client has no impact on the application or data files, performance is
improved, and the risk of data corruption by the client is significantly reduced. The server
maintains the application data.

Thig it on woemplo ol & Clenoder el model shank ik dient
FaGUSETE BRRICH BTd ING S8 DAovIOEE [

| —

A,
_'1]‘ !,i%jﬁ 1 The chisl Makes @ feduasd M Seiice I
Q: _:,_—'-_';'._'.‘-"ﬂ -)

—
2 Tha saress i@ssonds o He ragees [4

L. IR

[

. _— L 1

Tt

I Bcenan, Té Sarvar il sliws B cdhanl 1o adusly
taach i AQElCAnOn oF ABA AR & Rl Bh AT AL Ao MG
on the epplcsbos or dele lles. Wher The cleend Craskes e s
s darser B thie apodeadon or euppemeg caen Al malnben ancn
o i sppinetion i parl crmied by e senne

Figure 1-2: This diagram represents a client/server model.

Today, a single server performs all Internet-related application services, from authentication
to data access. This may not present many challenges on a small scale, but when the
frequency of data access exceeds the database server's capabilities and the application server
receives more requests than it can respond to, we have problems.

And what about reliability? If any portion of this solution, which in many cases resides on a
single server, is overwhelmed or crashes, the business solution fails, and the business
depending on this solution may be damaged.

Likewise, the client browser can have difficulty manipulating or intelligently handling data.
The web browser is basically dumb and, for the most part, does what it's told, thus greatly
reducing the browser's ability to meet an individual's specific needs.

The .NET suite of technologies includes everything from development tools to Web Services
in an effort to increase scalability, reliability, flexibility, and manageability, thus addressing
these business issues. As such, .NET frees the web server from its limited communication
with the client web browser, and allows it to communicate with other web servers on the
client's behalf (see Figure 1-3). For instance, if you schedule a service to be provided by a
business, like canceling or rescheduling a flight, and if that business is unable to fulfill your
request, your provider's Web Services will work with other Web Services to find another
provider to satisfy your needs.

r il vt
o Wl iy

»

e i 3
- — e

3 Vst S wor 3 with ol
wish Sonans of bial! o e dhend i
AP S W W B S I ARG
P saiended Sl bmna'lh

3. el Serdor A nespreds wilh boke] =1
rESwEEon nd Gk rues 13 inberc?

_w@m TN

I

J

|

| .~
%
|

i
m
=Y
| m—
===
=_—
v
i

Figure 1-3: A server working with other Web Services on behalf of the client.
Performance and Scalability

If a system is not scalable, there's not much point in building systems to support large
numbers of concurrent users. In fact, when considering large systems, performance is
important, but scalability is still more important.

Performance refers to the number of processor cycles that are necessary to complete any
given task, or the time that is required to complete a single task. Scalability is the number of
concurrent users that are able to perform a task at the same time. For example, say you run a
component that returns information at an incredible rate. The cost of this transaction is 100
percent CPU utilization. While the performance of this task is good, its scalability is poor
because the CPU can support only one or two concurrent users who are requesting this
transaction.

Scalability is almost entirely determined by your application's architecture and adherence to
good coding practice. Even one poorly written routine or transaction can reduce an
application's performance. You'll learn about these topics and more in Chapter 2 in which
tiered development is covered.

The Benefits of .NET

For the developer, the answer to the question "Why .NET?" revolves around the benefits of
Visual Studio .NET and the meaning of ".NET."

NET is a set of cross-platform technologies, including time-tested and accepted protocols,
such as HTTP, and platform-independent standards like XML. These two technologies allow
COM and CORBA to interoperate, through Web Services, like never before. Issues
concerning the platform are now removed, so developers can concentrate on business
requirements.

Note As we witnessed with the rise and fall of Windows DNA, Microsoft often changes the
names of its new technology suites. .NET (pronounced "dot net") was first called
NGWS, Next Generation Windows Services.

NET is a moving target and is clearly in a state of flux. While much of what we know about
NET is not likely to change, new methodologies and paradigms are sure to arise that will add
to what we already know and understand. And, as these new and innovative technologies
emerge, some will fail to achieve industry acceptance and will be discarded or will simply
disappear.

Before the Internet, most application development was limited to Windows-based forms. As
the Internet's popularity rose, the development of web applications increased and the world
began to change.

Early web technologies were limited to creating static pages with click-and-link functionality.
This satisfied users initial web requirements because people were simply happy to be able to
surf the Web and even more pleased to contribute to its growth. For the most part, this also
satisfied the requirement of providing information to a growing Internet population. However,
as businesses began building static websites, they realized quickly that consumers wanted
more dynamic pages that would reflect new and changing products.

Acceptance of Open Standards

One of the most important aspects of .NET is Microsoft's acceptance of open industry
standards. The full acceptance and implementation of XML is significant. While XML is not
the "end all" technology that some people think it is, it's one of the few available ways to
integrate disparate systems. Without an open standard like XML, developers would need to
rely on proprietary third-party applications for data integration.

Nearly every one of Microsoft's current servers (see Table 1-1) will be a .NET server that
supports XML and the .NET Framework. (Previous versions of SQL Server had very limited
XML support.) The implementation of industry standard protocols in .NET and throughout
Microsoft servers marks Microsoft's effort to create cross platform applications, as services-
nothing less than a paradigm shift for traditional Microsoft application developers.

Table 1-1: Current and future .NET servers
Server Description

Microsoft Application Center Server Manages clusters and deploys web applications.
2000

Microsoft BizTalk Server 2000 Implements business processes and provides data
through an agreed-upon interface.

Microsoft Commerce Server 2000 Helps in building e-Commerce applications.
Microsoft Exchange 2000 Enables messaging and collaboration (e-mail).
Microsoft Host Integration 2000 Allows communication with the mainframe.
Microsoft Internet Security and Operates as a firewall and web cache.

Acceleration Server 2000
Microsoft SQL Server 2000 Offers database storage and analysis services.

Web Services

One concept that may be entirely new to you is that of Web Services; a principle that
underlies much of the .NET strategy. Web Services are services exposed by an Internet
application for consumption by another service or client application. Web Services are built
using industry-standard tools (such as XML and HTTP), and are platform and development-
environment independent, which means that you don't need to use .NET to deliver them.
Developing Web services requires a paradigm shift: we need to move away from the single-
server, single-application model to a more distributed-services model.

This ability to create loosely coupled applications increases the flexibility of applications
requiring disconnected data services, like sales applications that require a sales representative
to complete a deal out of the office or on the road without Internet connectivity. Loosely
connected data-access relieves the database server from having to maintain a database
connection for everyone using it; instead, database connectivity is established when
convenient or when necessary to transmit new records. Loosely connected data also enables
disconnected devices that require read access to a specific subset of data for the user to
analyze offline. (Chapter 9, "Retrieving Data," discusses Microsoft's ADO.NET, implemented
by Visual Studio .NET, the relevant piece here.)

The use of industry standard protocols is key to the wide adoption of the .NET initiative.
While loosely connected applications promote flexibility, .NET's support of industry-standard
protocols brings reliability. By combining HTTP with XML to produce SOAP (Simple Object
Access Protocol), .NET offers a reliable web-enabled development solution. SOAP, which is
XML traveling over an HTTP transport layer, is the foundation of Web Services. Not only can
SOAP take advantage of COM, but it can also take advantage of other standards, such as
CORBA (Common Object Request Broker Architecture). These technologies make up a
majority of middle-tier solutions, making SOAP a significant addition to the Microsoft set of
tools. (See Chapter 10, "Implementing Web Services," for more detail.)

Visual Studio .NET Development Features and Enhancements

While the look and feel of Visual Studio .NET has changed from its predecessors, the real
enhancements of Visual Studio .NET are the underling technologies the development
environment is based on. It is these technologies that allow for rapid development with the
stability and reliability of classic development environments such as C++.

Visual Studio .NET Designers

Visual Studio .NET provides easy access to underlying server functionality by giving
developers access to server functions like message queuing and event logging, as well as a
variety of designers from the VS .NET environment. Designers are the key component of
Visual Studio .NET; allowing developers to be guided through complex development of
specific components. These designers, including XML Data Designer, Web Services
Designer, Windows Forms Designer, and Web Forms Designer, provide easy access to
generated code based on class frameworks. The generated code is accessible to the developer,
allowing the developer to modify or add code.

Visual Studio .NET's Visual Web Page Editor's WYSIWYG interface eliminates the need to
master HTML. Developers can still modify their HTML but need not spend time reinventing

the wheel. The most significant enhancement of the Visual Studio .NET Web Designers is the
separation of presentation and business logic code.

Common Language Runtime

One significant enhancement to Visual Studio is the addition of a language-independent
runtime called the Common Language Runtime or CLR. CLR offers the ability to develop in
any language in a managed environment that is less susceptible to memory leaks and that
provides metadata for components to allow for type checking and debugging.

CLR's security and version-control features, which we'll discuss throughout this book, make it
easier to deploy applications and to sell them as a service rather than simply as an application.
CLR makes it easier, faster, and safer to create web applications than with Microsoft's
previous Package and Deployment Manager. (We discuss this further in Chapter 4, "The
Framework.")

.NET Languages

Microsoft created the C# language (pronounced "C sharp") to give you the power of Visual
C++ and the ease of use of Visual Basic. That's Microsoft's story and they're sticking to it.
The truth is that the two main .NET languages, C# and Visual Basic .NET, have very similar
capability.

All .NET languages support a minimum subset of CLR functionality, and their level of
support will vary. For many applications, language choice will have little impact; however, of
the 20-plus .NET languages coming available, some will be better suited for scientific
calculations while others are ideal for financials or most efficient for processing 10. The
issues of languages should not cause heart pain for organizations. However, companies that
limit their development by over simplifying standards will miss out on the full functionality of
the CLR.

Note While C# and Visual Basic .NET are high performing object-oriented languages, you
may encounter situations in which Visual C++ offers performance advantages. (In most
cases, though, performance is enhanced more through good design and best practices
than by the language used to build any individual component.) While you'll find other
comments about C# throughout this book, you won't find C# tutorials. You can find
plenty in the .NET Framework SDK.

Intermediate Language

NET's new Intermediate Language (IL) supports multiple languages and is CPU independent.
All .NET code is first compiled into this IL and, because the IL is CPU independent, the
component can be platform independent. IL has its costs, too: For the component to be
platform independent, it must be compiled for the specific platform to which it is deployed in
its native format just before it is used. This just-in-time (JIT) compilation uses resources and
takes time and we'll address these issues in Chapter 4, "The Framework."

Server-to-Server Communication

Server-to-server communication is another .NET initiative. Before .NET, Internet developers
were happy to simply redirect the browser to the server maintaining the data the client
required. Consequently, before .NET, if a client needed access to several Internet services, it
would first need to be redirected to the appropriate sites and then be connected to each web
server. Technologies such as SOAP/Web Services enable clients to connect to services that
are provided by other web servers on a different platform. This server-to-server
communication allows a company to create a high-demand service (anything from an
identification site to your future e-wallet) and expose it, because that service is maintained by
the organization that specializes in a given service.

Summary

In this chapter, you learned:

NET will take a few years to be completely realized. In the meantime, we will learn
how to use the pieces of .NET that are released to design our applications in a way that
will allow an easier transition to .NET.

e One of .NET's goals, to make all web applications available on any device, requires
decoupling data and business rules from the client and supporting them in the business
and data service tiers.

e Microsoft's implementation of Web Services with SOAP is an industry-standard
implementation with a focus on cross-platform integration. Web Services provide a
mechanism for server-to-server communication on behalf of the user rather than
redirecting the user to another site.

o Deployment is made easier with CLR, the Common Language Runtime.

e NET includes a set of servers that have been upgraded to support XML.

e .NET's goals are manageability, scalability, flexibility, and reliability.

e Visual Studio .NET Intermediate Language (IL) makes it possible for us to use several
programming languages, all hosted in one environment.

e The adoption of industry-standard protocols and related technologies is the largest

initiative of .NET, making use of time-tested technologies such as HTTP, HTML, and

XML. XML and HTTP have been rolled into SOAP.

Chapter 2: Evolution of Tier Development

Overview

Component-based programming is valuable because it lets you divide general program
functionality into more generic, manageable components. This encourages code reuse,
flexibility, and horizontal tiers that break the application into logical sections based on its
services. This chapter gives you a complete understanding of tier development, its advantages,
and some of its disadvantages. By the end of this chapter, you should have a good idea of how
to place functionality within your components.

You'll learn how tiered development has evolved from a centralized environment to today's
distributed multiple-tier server farms. The chapter examines centralized management,
distributed computing, performance, scalability, business rules, and the user experience.

You'll also learn about a couple of proven n-tier models and their specific implementation
issues.

Once you've learned about tier modeling, the chapter discusses the implementation of
business rules, including the advantages and disadvantages implementing them in different
tiers of the application. You'll learn the differences between business rules, data-specific
business rules, and business processes, and how and where to implement each type. Next, the
chapter covers the challenges that are presented by application state. You will learn why
application state presents performance and scalability problems and some proven solutions to
this problem.

Finally, you'll learn about Web Services and its role in the tier model.

Evolution of Tier Development

An application tier is a functional layer of an application. Each functional layer performs a
specific application task, effectively creating a logical division of functionality within an
application. The implementation of application tiers can more easily be physically divided to
deliver a distributed application among multiple machines.

The tier development model was designed to solve many application challenges. Some of the
issues that are addressed by tier development are centralized management, distributed
computing, performance, scalability, and the user experience.

Centralized Management

In a centralized-management environment, configuration changes made to the central location
are distributed and applied to the surrounding system. A system with centralized management
can be managed from a limited number of locations.

Microsoft's Application Center 2000, a deployment and management tool, is one example of a
system that uses centralized management. With its ability to manage server clusters,
Application Center increases an application's scalability and reliability. More importantly, it
centrally manages the application supported by the cluster, configuration of the application,
and server configurations properties.

Centralized management makes managing a group of servers almost as easy as managing a
single server. When application components are updated, or a server configuration is changed,
the changes are automatically distributed to all servers participating in the Application Center
cluster.

Distributed Computing
In a distributed-computing environment, processing is spread across multiple systems and, if

necessary, across multiple locations. The goals are to increase scalability, fault-tolerance, and
network efficiency.

Performance

As stated in Chapter 1, "Why .NET," performance is a measure of the number of processor
cycles that are necessary to complete any given task. While a task may be completed quickly,
indicating good performance, this good performance does not necessarily mean that the task is
scalable. Users generally perceive performance in terms of an application's response time.
When an application does not scale well, the user thinks that the application is performing
poorly. It is therefore important for a developer to understand the difference between
performance and scalability.

Scalability

As mentioned in Chapter 1, scalability is a measure of the number of users who can perform a
task concurrently. While performance is considered good when a task is performed quickly,
the key to building scalable applications is to create a component that performs quickly using
the fewest possible resources. The desired result is an application that allows for concurrent
use with a reasonable response time. ("Concurrent use" and "reasonable response time" are
subjective terms and will need to be replaced with real numbers that will depend on your
application's requirements.)

Business Rules

Business rules describe the business's constraints on an application. The application of
business rules, while subjective at times, affects the data integrity of an application, and the
failure to adequately enforce these rules can negatively affect the business. While there may
not be a single right way to implement business rules, there are usually several acceptable
implementations. In contrast, there are many wrong ways to implement them. These issues are
discussed throughout this chapter.

User Experience

In a world where perception is reality, it is fruitless to spend time, money, and critical thought
on an application's architecture and design if the basic application is difficult to use,
unreliable, or inflexible. That is to say, even if an application performs like a top and is
scalable to 100,000 concurrent users, what good is it if your users hate to use it? While this
chapter doesn't show you how to improve your users' experience, it demonstrates a few .NET
tools that are designed to make this task easier.

Two-Tier Development

The two-tier development model is commonly referred to as the client/server model; the terms
are used interchangeably throughout this book. In a two-tiered model, a client application
requests information or a service, such as e-mail, from a single server or service.

Client/server environments distribute application processing between the client and the server.
The client application displays the user interface and receives input from the user. The server
application provides a service, usually data or communication services.

Figure 2-1 shows a simple client/server model with clients accessing one server. While this is
an accurate, logical diagram, keep in mind that most applications require many concurrent

users, so while the logical diagram is correct, a physical diagram would show many clients
talking to one server at the same time.

Thie i @ euamole of @ chenbisesier madsl whera T chent
PdubdRE SoMich &0 b Siefvd® DidwRaes I

.1|-

'\-\.-_F- —Eg
ﬁ FOCUREE 1T BOrvC [—=]
't | 1. The chont maan 2 recuest far senice.
3:,__,_..,—:"'; == 2. Tha Bonvar TEsends & harues l—l
”""ll) 100000
[xlF s | nooonn f_
- Epplcmbn barel

[= 1}

n ths ESaatio, he fonee fiidvad alows: the cliont 1o GFaally
ouch (e spolcalion o dese. A3 eresull the dhent has no mpec
on o acplcpeon or Jata e, Ywhen the dierf crashos thero 15
0 CENQE 10 Teb Spphaon o SUPPOTING ia Al MEaeane
on e epplicmson |5 perdiormed by the sereer

Figure 2-1: The two-tier (client/server) model.
The following sections cover a few critical two-tier topics.
Two-Tier Code Management

There are two aspects to managing code in a client/server environment, namely the
management of both client and server. (Client refers to an application executable that runs on
a client computer.)

The challenges in managing a server are relatively straightforward. Unless the server is part of
a cluster, server code must be managed and deployed in a single location. If the server is part
of a cluster, the code must be sent to each server (manually or automatically) using cluster-
management software, such as Microsoft's Application Center 2000.

On the other hand, the client application is much trickier to manage than the server. Changes
made to components of the client application must be distributed to every client, in many
cases simultaneously. Such simultaneous deployment requires a high level of coordination
and, depending on the number of clients who receive new components, a reliable deployment
package.

Client deployment presents other potential issues, including coordination with the server.
Changes to the server application may dictate that the client application needs updating,
which can render the entire application useless until all clients are updated.

Performance

The use of the client/server model also affects network performance. Because all data and
service requests must be transferred across the network in the client/server model, the network
can become overwhelmed easily, creating a bottleneck. This problem is magnified when you
consider the traffic that is created by many users using the same application at the same time.
Performance bottlenecks typically appear during times of peak usage, such as during month-
end processing or during peak hours of the day.

As network performance degrades, service requests begin to queue and a cascading effect
begins. Often the only fix is a quick one: Disconnecting all clients, rolling back all
transactions, and sometimes rebooting the server.

Depending on the network protocol that is used, it may be nearly impossible to distribute a
client/server application globally because the client application may need to reside on the
same local area network (LAN) as the server.

Data Access

Data access must also be considered when evaluating performance. Not only must clients
know how to connect to the database server, they often require their own dedicated database
connection (as shown in Figure 2-2). This arrangement is costly both in terms of licensing
fees and in the use of database resources that are required to maintain each connection. Also,
these database connections cannot be shared between applications, thus limiting the
application's scalability.

-'ﬁl-L =

|
I

‘-..\.. = 3 H.___\x)
whﬂ) ..‘&Eﬁﬁqe

Clhani 1

Client 3 =" Duisbess

A 1 _,.--""f.;.

Clianit 3

Figure 2-2: Three clients requiring their own dedicated database connection.

Business Rules

The client/server model offers only two locations for maintaining and enforcing business
rules: The client application and the server application that provides the database services.
The server is the preferred location for implementing business rules because it avoids the
possibility that a client might not receive a modified or new business rule during an update.

Implementing business rules on the server's database also avoids another possibly sticky
situation. In many cases, multiple applications will need to access the same data, and it would
be very easy for a developer to implement a business rule in one application and forget to add
it to another application. If the business rule is implemented in the server's database, there is
no way around it.

Three-Tier Development

The three-tier model (shown in Figure 2-3) improves on the two-tier model by dividing
applications into service tiers: User Services, Business Services, and Data Services. These
divisions allow for greater scalability and reliability.

User Servicos Businoss Services Doata Sorvices

Ligsr Bishics Clasus Basinans Sonscse Dl b vt Brvcast Clatiia

Figure 2-3: The logical three-tier model.
User Services

The User Services tier, also referred to as the presentation layer, is made up of windows
executables and/or web pages, such as dynamic HTML or Active Server Pages. User Services
tier is the interface that is used to display data to the user and to receive input. In a three-tier
model, it is unnecessary for the client or the User Services tier to know anything about the
database or any other service that is provided by the Data Services tier.

Business Services

The second tier is the Business Services tier, which is responsible for knowing exactly how to
access data. These responsibilities include requesting data on behalf of the User Services tier
and returning query results. The Business Services tier can, and in many cases should,
maintain business rules.

The Business Services tier, as shown in Figure 2-4, exposes all the functionality that the User
Services tier requires. While its main purpose is to decouple the User Services from the Data
Services, the Business Services tier does much more. Any function, including calculations and
other application-specific tasks, are available through the Business Services tier. All User
Services have access to the Business Services tier, which physically resides on a server
accessible via the network. Any new or modified business rule needs only be deployed to the
Business Services tier, thus eliminating the need to redistribute anything to the client
application.

%‘;%!1

Uhnsr 5-\ foan Ther
= Businoss
Saruices

Camponpnts
"F"ﬂf"ﬂ- -_____L o
Uner Sorvicon Thee —_—
,..-_.--"'_'-F - T — 1
= /‘ —
- l -5! el
P 5"""""“ et B-rilmu Barvacas Tiar Duats Berveres Tar

Ussr SeEndces The oar Sarvices Tiar

Figure 2-4: Business Services tier components being used by all User Services.
Data Services

In a further effort to decouple application services so that they can be more easily managed
and supported, the Data Services tier provides data access to the Business Services tier, which
in turn passes this data on to the client application in the User Services tier. ADO.NET and
the Database Management System (DBMS) are both maintained in the Data Services tier.
ADO.NET is Microsoft's solution for universal data access, and SQL Server is Microsoft's
solution for the DBMS. Both provide data access: ADO.NET provides a method for getting at
data and SQL Server provides the database engine that is required for maintaining the data
itself.

Code Management

Code management in a three-tier application is much easier to support and less problematic
than with a two-tier application. Since the application is logically and physically divided,
there is no need for a single development team. Presentation developers can build the user
interface without having access to data, business tier developers no longer need to understand
user interface requirements, and database programmers can focus on relational data and the
implementation of known business rules. Because each service tier is physically separated,
they can each be compiled and/or reconfigured without involving the other services, thus
freeing up the developers and reducing coordination requirements.

Scalability

Scalability is greatly improved in three-tier applications because database connections can be
disconnected or maintained for use by other clients, reducing the number of concurrent
database connections that are needed to support an application. Processing is transferred from
the client to the Business Services server, and network performance can increase because the
Business Services server can communicate with the database server on the same network,
reducing the amount of network traffic.

Scalability is also enhanced through the clustering of the Business Services and database
servers. Business components loaded into memory can remain loaded through services

provided by COM+ and Enterprise Services-this increases the number of users that can be
supported by the Business Services server because the time required to load a component
from the hard drive into memory is significantly reduced.

Business Rules

With one exception, there is no real right way to implement business rules. That exception is
that you should never place business rules in the client application or User Services tier where
the client applications can easily bypass them. As a result, if a rule is placed in one client
application, it must be placed in every application accessing the database.

You can reliably enforce business rules in either the Business Services or Data Services tier.
When placing business rules in the Business Services tier, make sure that all applications
accessing your data are also using your Business Services tier's components. If an application
can bypass the Business Services component that enforces the business rule, the rule itself is
not enforced. When enforcing business rules in the Data Services tier, no application can
bypass the business rules, hence the advantage of placing business rules here.

Programming languages such as Visual Basic .NET, Visual C++, and C# are well suited to
implementing business rules. However, the objects and languages that are available in SQL
Server for enforcing business rules are column-level constraints, table-level triggers, and
Transact SQL (Microsoft's SQL Server programming language). Although SQL Server's
Transact SQL is not a particularly flexible language, with a little effort and a lot of practice
you can implement almost any business rule.

Note When Transact SQL is not sufficient, Microsoft provides stored procedures for calling
COM components. These stored procedures are sp_oacreate, sp_oagetproperty,
sp_oasetproperty, sp_oamethod, and sp_oadestroy. For more information on these
stored procedures, refer to Microsoft's online SQL Server documentation.

N-Tier Development

Strategically dividing an application into tiers can greatly improve an application's scalability,
performance, flexibility, and manageability. Giving each tier a specific task allows the
development and system configuration to focus on the needs of the tasks that are performed
by that tier. Further dividing these tiers can let you further separate out the tasks of the tier.

Any application with three or more tiers is considered an N-tier application. "N" represents
any number greater than two. For the purposes of this section, N-tier refers to a five-tier
model, which is the same as the three-tier model with the Business Services tier divided into
three tiers or tier classes (as shown in Figure 2-5): Facades, Main Business, and Data Access.

User Services Business Services Data Services

[

|] |

ser Sardice Chavses Fatastes Daka Acodss

Daia Sarsices Classes |

=1

Wan Dusiness

Figure 2-5: The divided Business Services classes.

Dividing Business Services

Once you have divided the Business Services tier into three tier classes, the three new tiers
reside in the Business Services logical model while supporting a more defined set of
functionality. Even though these more defined tier classes are part of the Business Services
tier, they can be packaged separately and deployed on separate servers to increase scalability.

Note This book doesn't discuss in detail how to implement these services. To learn more
about how to implement the N-tier model, read Designing for Scalability with Windows
DNA (Microsoft Press). Keep in mind that this book was written at the beginning of
2000, meaning that the code examples are provided for Visual Studio 6 and require
modification to work under Visual Studio .NET. This is not a problem. In fact, consider
it good practice.

Facades Class

The Facades classes, shown in Figure 2-6, act as a buffer between the User Services tier (or
presentation layer) and the functionality provided by the Business Services tier, which offers
several advantages. One less obvious advantage of the Facades classes is that you can create
sub-classes; thus, you can create a Facades class to return statically embedded data, allowing
the User Services developer to more quickly begin development and prototyping.

Ugad Fory o Eiursimn i 500 il Data S wicos

— :

Uiper Servion Charms | E o,

-]

|D:| Rocarr |‘ "'I [ta S rndcnr Qamren

Figure 2-6: The Facades classes as a buffer component.

Another more significant advantage is that the Facades classes remove the complexity of
accessing business functionality. Business Services components are, or should be, built so that
their functionality is generic and can be used by a number of applications. As such, any User

Services form or web page will need to instantiate, or load, several components to perform
any task. With the Facades classes, the User Services developer needs only to instantiate the
Facades class, and the Facades class deals with the complexity of business-functionality
instantiation.

Main Business Class

The Main Business classes or Business Level Layer (BLL) provide actual business
functionality, including enforcing business rules, maintaining collection classes, ensuring
business functionality, and providing access to data components. The Main Business classes
provide the actual intelligence of the application. The Facades classes call the appropriate
main business components (Figure 2-7), and the Data Access components only access data
they are told to access. You'll learn about Data Access components in the next section.

U ar Senvices Business Sarvices [hinl oy S s
a1 e
e = ’
Tws £ ___'_____ :
| e i & 4 d.i'ih'_|

a2 rterm] e

L S v e _:;:: - B E
——r

1 Gk Seracen Closes

Figure 2-7: The relationship of the Main Business classes to Facades and Data Access classes.
Data Access Class

Data Access components (Figure 2-8), or Data Access Layer (DAL), perform data access on
behalf of the Main Business classes. These components know about the Database Services
tier, and as long as this is the only tier that is required to know how to access data, the
transition from one type of database server to another is as simple as modifying this tier alone.
The rest of the application is shielded from the burden of knowing how to access data.

User Services Business Servicos Datn Services
(- —
[wtama |
g -
Taceds
e L.] v
P rtwis? et | H
Usor Borvice Closses |~ [, _Jombemd | 4 I Data Acoess [| Data Servcos Classs

boperora) | siis MRy

--------- L

e

Figure 2-8: The Data Access component ready to access and pass data to the Business
Services tier.

ADO.NET is Microsoft's preferred method for accessing data, no matter what the database
provider is. ADO.NET provides access to a multitude of data sources and methods, including
SQL Server, Oracle, Sybase, MS Access, MS Word, MS Excel, and so on. In tier
development, the data source is typically a DBMS (Database Management System) that
provides a variety of data access methods. When using ADO.NET, application developers
tend to use the query components of ADO.NET, although other database-specific methods are

available. For example, in the case of SQL Server, stored procedures provide a way to collect
and return data that is up to 40 percent faster and less demanding on database resources.
Whenever possible, try to use platform-specific features. Of course, the downside of using
platform-specific features is reduced portability across platforms, but this is a judgment call.
Try to use platform-specific features when it makes sense, even at the expense of platform
independence.

Data-Specific Business Rules

As mentioned earlier, dividing an application into tiers improves both its flexibility and
manageability, such as in the implementation of business rules. In a tiered model, you can
implement business rules strategically for maximum enforcement.

You should implement business rules in the Data Services tier whenever possible because the
database is the lowest common denominator. However, this is only valid if you can
implement the rule simply (examples might be setting the default values of a field, enforcing
data relationships, or ensuring data uniqueness). Also, the rules that you implement in the
database should be data-specific rules and not business processes because all applications that
wish to fetch, modify, or insert data must access the database.

More complex rules, or rules more closely related to business processes, such as invoice
processing, should be implemented at the Business Services tier. Avoid the Business Services
tier for data-specific rules because business rules that you implement at the Business Services
tier can be bypassed.

Note The following sections relate to the implementation of business rules through the Data
Services tier. The information is very basic and can hardly be considered more than a
primer on how to take advantage of database constraints. If you want a glimpse into how
the database can help you, these brief explanations should suffice. If you are an
experienced database developer, you may wish to skip down to the "Application State"
section.

Business Processes

A business process is a rule-based, predefined set of tasks that is designed to complete a
transaction. While the database can easily handle many business processes using triggers and
stored procedures, you should always implement business processes in the Business Services
tier and limit access to the database. If you don't, you'll likely reduce an application's
scalability and cripple data services.

For example, a credit card transaction only needs access to modify the database when
recording the purchase and other information. Building this process into the Business Services
tier makes the application more scalable by allowing for the use of additional distributed
Servers.

Constraints

Use data-specific business rules to protect data, not to implement business processes, and
remember that simply ensuring that data inserted into a database that meets the data type
requirement does not mean your data is necessarily protected. For example, consider what

happens when you modify an employee's ID when the ID is used in other tables. If this kind
of modification is permitted and no other actions are taken, the data related to this employee
will become orphaned (meaning that the data will no longer relate to anything) and will
become useless or corrupt.

It is important that you don't accidentally modify key information when data in other tables
depends on it. For instance, in a parent-child relationship in which the child is dependent on
the parent table's data, the child can be orphaned if data is incorrectly modified or deleted
from the parent table. (Foreign keys address this problem by enforcing referential integrity: If
a parent record is modified or deleted, those changes are cascaded, or replicated, to all the
child tables.)

Another business rule might be that you cannot duplicate a certain type of data in the
database. The business rule might state that while a customer can have many records relating
to him or her, the customer itself cannot be duplicated in the database. This data can be
implemented at the database level by using a UNIQUE constraint. Often, if the column that
requires uniqueness is also the subject of the table, adding a primary key is a good practice.
This procedure allows you to take advantage of the FOREIGN KEY constraint. Or, a business
rule might require additional information before you can insert a record into a table. Within
the database, you can configure the columns that require data not to accept null values. On the
other hand, you can apply a default value where data is not available.

GUIDs

One way to take advantage of default values is to use globally unique identifiers (GUIDs).
GUIDs are an excellent way to guarantee uniqueness for records that will be replicated across
databases. Obviously, the person entering customer information could care less about whether
the customer is globally unique. Nor does the Business Services tier care. However, when you
use the Newld() function (that is provided by SQL Server) as the default value, all customers
will always have a globally unique identifier that is used for database replication or simply for
uniqueness within a table. Use GUIDs for table uniqueness if you've had to add GUID
columns to tables that you have not created with the foresight to include replication. You'll
learn more about this in Chapter 9, "Retrieving Data."

Using a CHECK Constraint

Rather than focusing on database referential integrity, many business rules concern the
specific values that are allowed. These are values that make business sense and are specific to
a column. For example, if a customer is entered into a system with a customer category,
chances are that there are sets of valid category numbers. A CHECK constraint can be placed
on a column to ensure that only a specified range of values is entered.

Triggers

Triggers are an excellent means of rule enforcement. I recommend that you make sure there is
no other way to implement the rule, and if there is not, use a trigger. The reasoning for this is
based on the amount of processing that occurs before the rule is enforced. In the case of a
CHECK constraint, the data is validated before it reaches the table. A trigger doesn't validate
data until the data has already been entered into the table. If data checked by a trigger violates
some rule, a rollback is required, meaning that not only is the record rejected but now it must

be removed from the database. In defense of triggers, they are sometimes the only means for
comparing data in a way that meets the business requirements. For example, if the data must
be compared to data in another table, a trigger is your best bet.

The Downside

After examining all the reasons for placing data-specific business rules in the database, you
need to understand the downside. You have to consider the possibility that the database
platform might one day change-perhaps from SQL Server to Oracle, or vice versa. The point
is that all business rules implemented at the database level may one day need to be
reimplemented in another database system. This can be a considerable challenge when you
consider that functionality can vary between systems. Regrettably, this is a good argument for
implementing all business rules, except for the very basic data-integrity rules, in the Business
Services tier.

What to Do?

Your choice of approach depends on the situation and inevitably involves tradeoffs. For
example, suppose that by using SQL Server stored procedures (which is an SQL Server-
specific feature), performance can be increased an average of 40 percent with a stored query
plan. The use of these stored procedures may cause additional development in the event that a
database platform change is required. Even so, a performance gain of 40 percent probably will
justify the use of this platform-specific feature. In any case, there are many ways to
implement the same solution correctly. Make the best decisions concerning your application
architecture and be flexible enough to change if you've made a mistake.

Note For more information on SQL Server and how to take full advantage of rule
implementation and performance, [recommend Kalen Delaney's Inside Microsoft SOL
Server 2000 (Microsoft Press). There are many books available, but this is a definitive
guide covering many aspects of SQL Server 2000 not found anywhere else.

Application State

The concept of state applies to several contexts of an application. One such context is system
state. The system that supports an application must know information about itself (for
instance, computer name, date and time, networking protocols, and installed applications).
This is not the kind of state that is discussed here. The state you are learning about is
application-specific state, and more specifically, a single user's session state.

The application state represents the values that are necessary to support the user's session-
specific environment. Take a user password for example. It's unreasonable to expect a user to
enter his or her password every time the person navigates to another page. On the other hand,
you cannot expect an application to accept a user blindly without a password. The solution is
to make the password part of the user's session state and to maintain it as long as necessary.
(In the Microsoft world, the password is not part of the user's session state. Instead, once
authenticated, the user is given an access token.)

Consider another example: The information necessary to complete a purchase online. As you
navigate from page to page, giving the application your name, mailing address, and payment
information, the application must preserve this information to complete the ordering process.

Without the persistence of application state, the application would forget your name and what
you wanted to buy as soon as you loaded the next page.

Application state is quickly becoming one of the hottest issues in Internet application
development because Internet applications need a way to track users, their application
preferences, and sometimes orders that are processed on the behalf of the user. For example,
think of a web farm, typically a group of server clusters. When a browser connects to a web
farm, it can connect to a different server every time a new page is loaded. Any user
information that is maintained by the application server is lost if the user's web browser
connects to another server in the server farm. A simple fix to this complex problem is to tie a
user into the first server to which the person connects for the duration of their session.

To build a scalable application, you need to aim for stateless components with the state being
maintained elsewhere. The database and/or client are two great places to maintain application
state because both of them typically place more permanent stateful information in the
database and less stateful information in the client.

Maintaining Application State in the Database

There are many different ways to maintain session state in a database-you can create either a
session-state database or a couple of tables in your current database. If you're relying on the
client, you will need to use cookies, as shown in Figure 2-9. The cu1p value that the cookie
maintains is related to data that is stored in the session-state database, and this relationship is
the key to maintaining information about any user's session.

A
e | I
i:-_,:;_'r. TN R0 e R S T M L
L '.._..:-r"r'.'.r' _

“Cliant ™

T

= 1= =i

E E =

A Bl 1
App Servar 1 App Sarver 2 App.Berear 3

N N o N T T DRI

e el oy Aan s
Session State Database

Figure 2-9: Application state in the database.

The best way to maintain application state within the database is to create a series of related
stored procedures specifically designed to maintain state. Whenever the user refreshes a page
or moves to another page, your stored procedure would first check whether session state is
stored in the database and, if not, the stored procedure would begin a process to initiate
session state. If it finds a session state for this user, the information is collected and used when
necessary.

While this is a fairly simple solution to implement, it may come with a performance cost
because every time you access the database, you take time that would normally be used to
process user requests. On the other hand, this solution will almost always perform and scale
better than solutions that use stateful components.

Maintaining Application State in the Client

One preferred method for maintaining application state in the client is to use ADO in the
client application (See Figure 2-10). This method is fast and easier to implement than using
stored procedures because it doesn't require you to invent new technologies or to build new
database tables or stored procedures; all you need to do is store session information in an
ADO object on the client.

Session Sian Database

Figure 2-10: Application state in the DHTML client.

The ADO method requires that the client supports ActiveX. While DHTML supports ADO,
HTML pages do not; consequently, in the interest of allowing the largest number of browsers
to access your application, the session state database is probably your best bet. If, however,
your client is a DHTML client, you're in business; DHTML allows all session states to be
maintained on the client as ADO.

The ASP.NET Solution

ASP.NET, the next generation of Microsoft's Active Server Pages, introduces a new way to
maintain application state. The old ASP method of maintaining state is undesirable for large
scalable applications because it maintains application state in the session object on the
application server, thus severely limiting the application's scalability, lowering performance,
and making a server farm almost impossible to implement.

ASP.NET supports out-of-process session state, meaning that user sessions can come and go
while leaving the session-state process open and available to anyone within a server farm. A
few configuration changes to the config.web file are all that is required to make ASP.NET
point to a common server. Of course, there is a performance trade-off; accessing a remote
server for session-state information is always slower than accessing an in-process application
running on the same server. If you want scalability, use the out-of-process model.

Note The book will not cover the implementation of session state using ASP.NET.
Final Thoughts on Session State

Session state is an issue that many applications will have to face. One of the most challenging
aspects of application state is implementing it in a legacy application. Many web applications
were built with session state maintained on the application server. Microsoft is partly to
blame, because they did not anticipate application state to be a scalability problem. For years,
you had to invent your own method of state management. Microsoft has finally identified
application state as a scalability problem when it is implemented on the application server,
and now provides methods to address it as previously described concerning ADO.NET.

Web Services

A Web Service is a method or set of methods that is made accessible through the Internet
using a combination of XML to represent the data and HTTP for transport. Web Service
methods are similar to COM or .NET Components, which expose methods and properties in a
black box. The consumer is a client application that calls the Web Service method. As a
result, Web Services fits very well into the N-tier model as an extension tier.

Web Services introduces a new way of thinking. Historically, applications were built and
distributed as stand-alone products. If you wanted to make a data repository available as an
application service, you not only had to make the data available, but you also needed to create
all the functionality that applications typically provide, including the user interface, data-
access methods, navigation, and application-state management. As a result, duplicate
development effort was required.

Web Services allows you to provide access to functionality without having to build a
complete application. A developer building the consuming client application can use one or
more Web Services to create a new application or complement an existing one.

Web Services Tier Model

Like the Facades tier, Web Services wrap up functionality and reduce complexity for the
consuming application. In fact, if you are building a Web Service for an application that was
previously built using Facades, Main Business, and Data Access tiers, all you really need to
do is wrap up the Facades tier with the Web Service while the Facades tier wraps up the
remaining functionality.

Figure 2-11 shows the Web Services Wrapper logical model, while another Web service is
providing new functionality not provided by the Facades tier. (You'll learn about all this and
more in Chapter 10, "Implementing Web Services.")

User Senvices

ﬁlﬁhn’lm Wrappar
Facaces Thr I Wb Service (M Functionality)

Bionest Tiar |

Data Accass Tear |

Coatn Senvices

Figure 2-11: A Web Service can wrap current functionality and provide new functionality.
Why Web Services?

Why bother with Web Services when we can use DCOM (Distributed Component Object
Model), Microsoft's solution for accessing remote methods, to provide remote functionality?
The reason is platform independence. While DCOM solves many application-distribution and
scalability problems, it is platform dependent. While once reasonable, this limitation is no
longer necessary, and industry standard technologies like HTTP, XML, SOAP, and ASP.NET
make it possible to bridge the platform gap.

RPC (Remote Procedure Call), DCOM, and MSMQ (Microsoft Message Queue Server) all
attempted to bridge the Internet gap and, while successful within the Microsoft platform, they
fail to bridge the platform gap as shown in Figure 2-12. Web Services succeed in bridging the
platform gap, paving the way for rapid data availability, reduced development effort, and an
enhanced user experience.

.d"”r"_— [
ORB [&CM ‘ =
TCPAP RPC
/ 1IHE.
Corba Client DCOM Server
'\-___ _'_,_I—"'-Ff

Figure 2-12: The incompatibilities of remote functionality without standard protocols.
Making Data Available

The need for information has been the driving force behind the Internet, and Web Services
can make any data repository available. Information is a major commodity with regard to
complimentary services.

For example, consider a subscription-based data service like Chrome data. Chrome data
maintains information about every vehicle ever built and sells a subscription to this data on a
CD-ROM, which must be periodically updated because the data changes frequently. Chrome
data allows dealers to trade used cars because they can readily identify the vehicle even if
they don't normally sell it. If Chrome made their data available through Web Services,
subscribers would not need to maintain the data locally; they could simply call it up over the
Web.

Reducing Development

Web Services reduces development because using it requires no intimate knowledge of its
inner workings. This leaves the developer with more time to focus on meeting business
requirements. When accessing other vendor's Web Services, there is no need to coordinate
efforts with the Web service author. Web Services are self-describing, and methods for
discovering how to interact with Web Services are available. You will learn about this in
more detail in Chapter 10, "Implementing Web Services."

Enhancing the User Experience

Web Services greatly enhance the user experience. Customers no longer need to be redirected
to another URL because Web Services can access other Web Services on behalf of the user,
much like the Facades class of our N-tier solution. A single Web Service can provide a
number of services, thus reducing or eliminating the need to send users away.

Web Services also save money. Rather than buying and installing an application locally, with
many features that users don't need or want, Web Services provide flexibility in the cost of an
application. Customers are charged for only the features they use and the frequency with
which they use them.

Candidates for Web Services

Any data repository or function is a good candidate for a Web Service. The following is a
short list of applications or data that might benefit from Web Services:

e Volatile data, such as the one example that was mentioned earlier, is data that is
provided by Chrome for vehicle make and model.

e Applications that require data and process integration between two or more
applications. Historically, data integration requires messaging while process
integration is loosely enforced through some type of request-reply solution. Web
Services provides ways to integrate both data and business processes without the
overhead that is required by messaging technologies.

e Application APIs can be wrapped and exposed as Web Services.

e Web Services can also provide Facades-like interfaces to a set of other Web Services
(which are provided by partnering businesses). One example might be a financial
organization that partners with lenders and credit bureaus in an effort to provide its
customers with a full range of services.

o Proprietary algorithms and other services that might be too difficult or impractical for
other businesses to implement can be exposed through Web Services.

Summary

In this chapter you learned that programmers have been forced to choose models that support
a variety of solutions throughout the evolution of tiered development. When you choose a
model, the distinction between performance and scalability must be clearly defined.
Performance is a measure of the number of processor cycles that are necessary to complete
any given task while scalability is a measure of the number of users able to perform a task
concurrently.

The implementation and enforcement of business rules is another critical aspect to building
stable and reliable applications. Placing business rule enforcement as close to the data source
is preferable. As there is a trade-off between enforcing business rules at the Data Services
Layer and in compiled code at the Business Services Layer, the decision should be to enforce
data specific rules in the Data Services Layer while enforcing all other business logic in the
Business Services Layer. Implementing business logic in the presentation layer should be
avoided at almost all costs.

Chapter 3: Visual Studio .NET
Walkthrough

Overview

Visual Studio .NET is Microsoft's most recent and successful attempt to integrate all
Microsoft development environments into a unified Integrated Development Environment
(IDE). Visual Studio .NET provides an IDE that can be shared by all .NET languages.
Furthermore, Visual Interdev features have been rolled up into Visual Studio .NET so that all
NET languages have access to Internet functionality.

One advantage of using a single IDE for all .NET languages is that it reduces the learning
curve needed to learn new languages and to build, debug, and deploy applications. This makes
the decision as to what language to use more of a personal or company preference (with the
exception of languages that expose special CLR functionality such as financial and scientific
calculations).

In this chapter you'll learn about the Visual Studio .NET installation, customizing the IDE, the
development environment, and Visual Studio .NET options. You'll also take a quick
walkthrough of common applications that are built with Visual Studio .NET.

Installing Visual Studio .NET

To install Visual Studio .NET, you'll need not only the installation media (of course) but also
certain minimum hardware. Visual Studio .NET cannot be installed on a network drive.
Another point is that Visual Studio .NET can be installed along side of MS Office 2000 and

Visual Studio 6 development tools.
The Visual Studio .NET hardware requirements and Microsoft's recommendations are:

e Processor: Pentium II 450 MHz (required); Pentium III 733 MHz (recommended)

e Memory: 128 MB (required); 256 MB (recommended)

o Disk Space: 3 GB required for the full installation

e Monitor Settings: 800x600 with 256 colors (required); High Color 16-bit resolution
(recommended)

e Operating Systems: Supported operating systems are Windows 2000, Windows ME,
Windows NT4, Windows XP, .NET Enterprise Server, and Windows 98.

e CD ROM drive: required

Installation Walkthrough
To install Visual Studio .NET, follow these steps:

1. Insert CD 1. The Visual Studio .NET Setup page is displayed (as shown in Figure 3-
1).

28 Yisual Sludio . MET Selup

Microsoft®

Visual Studio .NET Setup

snfure At thay aré not corupted, or indtall & new werdian
of the Wincows Cormpanant Jodate

l Feinstall Windows components iu risual Studw NET to

Yiswal Studio SNET
Fepar, renstall, or install additionad visual Studie NET
faatures, Tou can a'so uninstall Vouzl Studso MNET,

-

=hwck for the latest Servicw Relvases W ensure optamal
functionality of Visual Studio NET. Tou will have the cotion of
chedking using the Internst or a Service Pack disk,

Figure 3-1: The Visual Studio .NET setup screen.

The three choices here should be obvious. If you have not already installed Visual Studio
.NET, choose Windows Component Update. If you've already installed Visual Studio .NET
and want to reinstall, add new components, or repair broken components choose Update
Visual Studio .NET.

Note From time to time you will need to check the Internet for updated Visual Studio .NET
components. In Visual Studio 6 you had to search Microsoft's download pages for
updated components such as MDAC (Microsoft Data Access Components) or Visual
Studio service packs. With Visual Studio .NET, all you need to do is pop in CD 1 of the
Visual Studio .NET installation and select Service Releases.

2. Select Windows Component Update. The Visual Studio installation will ask for the
Windows Component Update CD.

3. Place the Windows Component Update CD into the CD-ROM drive and press OK.
You should see the dialog box that is shown in Figure 3-2.

*.. Mitrasoft windows Component Update 1.0 Setup

Windows' Component Update

Maintenance Mode

Automatic Lag On

Entar yaur usar acenuct passyword B hava sahip
aubomatically log on ater & setup reguired restart of the
computer, Visual Studio.NET 7.0 can r=guire mulbple restarts
beforz completing setup, Once setup completas automstic
log on is turned off.

O i

g] [|= P AT
_;n-.!.-\.lil.‘i |
Mo§ Information Lontinue Lance

Figure 3-2: The Automatic Log On dialog box.

This dialog box is designed to collect your credential information so the rest of the installation
will be able to reboot and log back in without your assistance.

4. Select the Automatically Log On check box, type your password into the Password

text box, and press the Continue hyperlink.
5. Press Install Now. A red arrow will indicate the current windows components being

installed or updated as indicated in Figure 3-3. The Visual Studio .NET installation
program will reboot your computer a few times throughout the installation of these

components.

15 Viswal Studio JHET Windows Component Update Setup

Micmsofi” Visual Studio’ .NET Windows' Component Uipdate

Maintenance Mode

Installing Lemponents:

« PMicrosoft FrontPage 2000 Web Extensions Client
« Setup Runtime Files

= Picrosoft J~ET Framework

Ingtall Progress
i

o0&

Figure 3-3: You can update, install, or repair Windows components.

6. Once the Windows Component Update is complete you'll get the first installation

dialog box. Select Update Visual Studio .NET.

7. The next dialog box (Figure 3-4) provides three more options. Choose Add/Remove

Features.

= Mot ¥iunl Boadie SUT ivberpris Aachiiec Bavep Opthr Page

Microanft”
Visual Studico NET Maintenance

Egpkians

iipdain
[T Sp———

!-!.-.- .

=l o Tl Pl 5

o Sl BT Crilwonnm el
Foloat Rora bx il ak

CE | %
I Bealwn g Dk
o Al WAIPres (e A Raal 1 Teabare desciphion
T M Py S Wywad wivdes LI Lsbey prinm Ay
L By elal Feponts lor Mausl Sl MET s BIv AT ¢
W gl Tt e B s i) Sl ol b a
- B sl e e | gl

ECR%A] S vy Dl b | e

v L T S

ol

Figure 3-4: You can customize the Visual Studio .NET installation.

Before you continue, observe the features of this dialog box. You can expand the options on
the left and select any option and view the installation path and space required on the right.
You may also change the path but remember to use only local hard drives in your path. You

cannot select a network drive letter.

8. Press Update Now! to continue. When the installation is complete, you will have the
opportunity to view the error and installation logs.

9. When you are finished, press Done.

Customizing the Visual Studio .NET IDE

One of the new advances in Visual Studio .NET is its customizability. You can customize
Visual Studio .NET with a familiar environment to make tasks easier to perform and
duplicate. Customizing the environment enables you to automate common and repetitive
tasks.

The Start Page

To open Visual Studio .NET, select Programs from the Start bar, then select Microsoft Visual
Studio .NET 7.0 from the Microsoft Visual Studio .NET 7.0 program group.

The first time you run Visual Studio .NET, My Profile (Figure 3-5) provides customization
options. You will always have the opportunity to customize Visual Studio .NET, although this
particular Start Page is displayed the first time you start Visual Studio. (To access this page in
the future, click the My Profile hyperlink.)

o ST N

o Sk P LI

BOg =

- |- EP—
=1 Dy el LI §
N #Ea
[i | =
o i
A T
e
|

Figure 3-5: The My Profile Start Page used for customizing Visual Studio .NET.

The Visual Studio .NET Start Page provides links to related development information. On the
left hand side of the Start Page, hyperlinks point to Get Started, What's New, Online
Community, Headlines, Search Online, Downloads, XML Web Services, Web Hosting, and
My Profile. These links help to provide quick and easy access to related .NET development
information.

Get Started

The Get Started Start Page offers all of your recently opened solutions in a hyperlink list.
Click a link to begin working with an existing solution.

What's New

The What's New page provides links to the latest information for each language and Visual
Studio .NET Extensibility components, and allows you to look at Visual Studio .NET
updates.

Online Community

The Online Community page provides a host of news group links.

Headlines

The Headlines page provides a list of hyperlinks that point to Visual Studio .NET news links.
One of these, http://msdn.microsoft.com/default.asp, is packed with information including the
MSDN Magazine, featured articles, news, columns, technical articles, and training and event
information. This is an excellent place to begin researching any Microsoft related subject as
well as to help keep up with the latest information.

Search Online

The Search Online page provides portal access to the MSDN library.

Downloads

The Downloads page provides easy access to the latest product updates, sample code, and
software development kits.

XML Web Services

The XML Web Services page allows you to search for and register web services.

Web Hosting

The Web Hosting page provides access to companies that host .NET applications.

My Profile

The My Profile page is the first Start Page that is displayed after installation, and provides a
means for customizing the Visual Studio .NET IDE. This page includes your profile. Other
developers can work on the same machine and maintain their own sets of customized settings.

The profile drop box lists predefined profiles that help to leverage your personal preference
and reduce the learning curve when first using Visual Studio .NET. The Keyboard Scheme
and Windows Layout provides Visual Studio .NET with a set of predefined keyboard
schemes.

Microsoft Solution Developer Network (MSDN) is an online technical reference for
developers. Previous versions of Visual Studio integrated MSDN by loading MSDN with a
related topic (in its own stand-alone application) when help was requested. Visual Studio
NET fully integrates MSDN so that all searches and search results are managed within the
Visual Studio .NET IDE. The Help Filter option of the My Profile Start Page allows you to
search a subset of help topics specific to their needs. This helps to reduce unnecessary search
time. For example, when you are searching for how to implement ADO.NET using Visual
Basic .NET, you don't have to also search and return the equivalent information for each of
the other .NET languages.

Auto Hide

The Auto Hide feature is an attempt to reduce screen clutter and complexity. Auto Hide
displays tool windows as tabs; placing the mouse over one of these tabs expands the hidden
window. By default, Visual Studio .NET provides a hidden Toolbox and Server Explorer.

Dockable Windows

Not only can you hide the tool windows, but if you turn Auto Hide off, you can view the
contents of a tool window without it floating around the IDE. (They are made dockable to the
side of the IDE.)

Navigation Buttons

Browser-like navigation buttons (like those shown in Figure 3-6) provide a familiar and
efficient way to navigate through opened windows.

== Q0 & G me -~k JCEEAr S]
Figure 3-6: The navigation buttons.

Favorites

The Favorites menu item of both Internet Explorer and the Windows environment are
integrated into both Visual Studio .NET and MSDN. You don't have to worry about loosing
all your favorite links when you upgrade to new versions of MSDN!

Multi-Monitor Support

A lack of screen real estate is a constant constraint for developers; this is now addressed with
such features as Auto Hide and dockable windows. Furthermore, Visual Studio .NET supports
the use of multiple monitors to increase available screen real estate. This feature can help to
display more tool windows to aid you without cluttering the development environment.

Visual Studio .NET Macros

Macros provide easy access to the Visual Studio .NET IDE. They are another method for
customizing the Visual Studio IDE from a task-oriented perspective. Macros are used to not
only customize how the Visual Studio .NET IDE behaves but also for automating repetitive
tasks and extending the IDE to do more than it does out of the box.

Macros save time and effort when a task needs to be repeated or automated. One advantage of
macros over other automation methods such as Addins, which are discussed in the next
section, is that they are easier to create than Add-ins. Macros can be created easily with an
editor, or recorded.

To access the Visual Studio .NET Macro development environment (shown in Figure 3-7),
press ALT+F11 or select Macros from the Tools menu option. This development environment
is feature rich and provides a single location for creating, modifying, and running macros.

%% Sampics Microwelt Visual ¥ladie Macees | design]
T Do Y Bewe Cemm Dek W b
w - r oo

Hinr e |

Faact

Figure 3-7: The Microsoft Visual Studio .NET Macro development environment.

The Macro Recorder

The Macro Recorder allows you to create macros with record and playback functionality
without coding (though it does provide access to the code that is used by the macros). With
this code accessible, it's easier to modify macros and to manage versions. In addition, you can
learn a lot from code generated by the Macro Recorder.

The following steps walk you through creating a simple macro with the Macro Recorder. This
will be a temporary macro that displays your Task Window:

1. Select Macros from the Tools menu option, then press Record Temporary Macro. At
this point the Macro Recorder is recording every click and action taken within the
Visual Studio .NET IDE.

2. Select Other Windows from the View menu option and press Task List. The Macro

Recorder recorded the click events just made.

Close the Task List window.

4. To run this temporary macro, select Macros from the Tools menu and press Run
Temporary Macro.

(98]

You'll notice that the Task List window is added to the Visual Studio .NET IDE.
Macro Explorer

The Macro Explorer (Figure 3-8) displays all available Macros in a hierarchical or tree view.
The various macros can be expanded by left-clicking the plus "+" sign to view their
supporting modules and then further expanded to display each modules supporting functions.
To run, edit, or view a macro, double-click on it. (The development environment is loaded,
providing access to all available macro components such as supporting code.)

S bydlacres - Mkeoial Vel S1udia e res [deslan] - ddedele]

B OF fem Puec Cemg Dak e (ep
o fn-E kU L - R R,

o Piodule

T | W (D ation)

« FLSROSL 158

H ;'I-V_‘QC!:-: o |
B

Figure 3-8: The Macro Explorer.

The Macro Explorer provides quick and easy access to all available macros, making the
management of macros simpler.

Add-ins

Macros provide a simple way to manipulate and access Visual Studio .NET's extensible
features. For additional extensibility and distribution, use an Add-in. Much like macros, Add-
ins allow you to automate repetitive tasks, reducing the time and effort that are required to
perform a variety of tasks.

One significant difference between macros and Add-ins is their programmability. Add-ins are
NET assemblies that implement the IDTExtensibility2 interface, Microsoft's dual-interface
that provides five methods that are required for Add-ins. These methods support events that
respond to startup and shutdown conditions.

The programmability of Add-ins offers several benefits. For one, compiled Add-ins are easy
to deploy and implement and are language independent. You can run Add-ins from a variety
of locations within the interface, including the Add-in Manager, toolbars, the Command
Window, and during the Visual Studio .NET startup.

Add-in Wizard

The Add-in Wizard makes it easier to develop add-ins by providing the basic framework.
Once the framework is created, all you need to do is to add code. Very little knowledge of the
Add-in framework is required.

To create a simple Add-in, follow these steps:

1. Select New from the File menu, then press Projects. The New Project dialog box
appears as shown in Figure 3-9.

Hew Project x|

Brojact Typest:
] Vsl ook Projects
o Setup s Deplerytrent Progects
=[] Other Frojects
) Cubabucie Frojects
+] Erderpres Tamplate Projschs
) Wiousd Sk Arsbees Projects
{2 Extenshity Frojects
) Apphcstion Canber Test Projects
-_| Whtwind Shiwlls Sk st

L~
|

Cireahey 2 Bkl bbb ir A Wisiasl Shickn MET Bisrce] bt

Péarres: | Myackinl

|ouation: |-'-'lP'l=rc'l = [rewenn.... |

Project wall be orested ot ol ProsctsMyadcnd .
Fhorg e | coed | mee |

Figure 3-9: The New Project dialog box displaying the Visual Studio .NET Add-in
option.

2. Expand the Other Projects folder and select Extensibility Projects.
3. Select Visual Studio .NET Add-in and press OK.

Now the Add-in Wizard (Figure 3-10) walks you through the necessary steps to create the
Add-in framework.

Extensibility Wizard

Welcome to the Add-in Wizard.

Thes vezard wall gatheer infiormatecn and create the code For an
AcdHin, Yo can then customze this dd-in ke your preferences
b add Furcbonalty bo the host apploation.

o | o e

Figure 3-10: The Extensibility Wizard Start Page for creating an Add-in.

4. The next Wizard page (Figure 3-11) allows you to select the language used to build
the Add-in. Select your language and press Next.

Wisual Studia Add.-in Wizard (Page 1 of 6)
Sebsct a Programining Language

Cresting Addrg in different programming language: & uoporbed. Which Language
ol iel you ks bo uss?

% Creste an Add-in using Visual C#
™ Cresks an Add-in using Yeusl Base,
™ Crests an Add-in usng Vieusl Ca+ | ATL.

o | <tock [[Houts | conci |
Figure 3-11: Add-in Wizard page displaying language options.

5. This Wizard page (Figure 3-12) allows you to select the host or application where the
Add-in is to be executed. Select the host environment and press Next.

Visual Studio Add-in Wizard (Page 2 of)

Select An Application Host
fan AaddHin can be bt 5o that it can be baded i muktipls applications (or hosts"
thich sppications would you bl Eo suppoet ¥

[Erfh:crm‘: ¥aMacros IDE
B rcrcsoft Visusl Studa BET

el < Bach, [Thed> Cancel
Figure 3-12: Add-in Wizard page displaying available Application Hosts.

6. This Wizard page (Figure 3-13) allows you to provide information about the Add-in,
such as the name and description of the Add-in. Enter these values and press Next.

Visuval Studio Add-in Wizard (Page 3 of §)
Fnter A Namea and Descriptinn

A Ackd=in namds & name and description bo better display s self (o the user. Enbor
these values below,

‘What is the name of your Add-in?
Mo Neainds porirviind,

What is the description for your fdd-in?
:r-ln e riphion pecracsd.

o <o [[lots] coce
o | |

Figure 3-13: Wizard page for entering the name and description of the Add-in.

7. The next Wizard page (Figure 3-14) provides a variety of Add-in options. The first
option allows you to specify whether the Add-in supports a user interface or not. The
next two options provide a means for optimizing the Add-in, and the final option
manages the security of the Add-in, determining who has permission to run the add-in.

Visval Studio Add-in Wizard (Page 4 of 6)

Choose Add-in Options.
o - E

woild you like to create UT for the user to interact with your Add-in?

I~ Wes, crests & Took® merw tem. By defsult this wil cause the Add-in ko koad when the
Button i chckad unless the Add-in s 26t bo load on startup of the host spplication.

™ iy ki voll neves put up el UL, sndl can be used with command ine bk |
[Dwnoubd bhas my Audd-in b Joad when the host application starts,

Setting up stoess privileges
W My Addein shouid be gvadable to ol users of the computer &t was netaled on, not just the
pargon whao installs i,
Hep < pack et > carcel |

Figure 3-14: Wizard page displaying additional interface and startup options.

o

This Wizard page also provides a means for adding "about" information. Press Next.
9. The final page provides summary information. If you chose the wrong setting or want
to change a setting that you chose previously, use the Back button to make the
appropriate modification. If the summary information is correct, press Finish.

The end result is an Add-in project with the Add-in framework ready for code, as shown in
Figure 3-15.

P [e Pomd Bl [shey ek Aiws Gebs e
F-h-EUd a- b taiag -

B Pee Spademn Pyt Setued |

T [Tre——
5| ks iy [a——
-] s P S e s ik

by

[e [-

1re

igure 3-15: The project created by the Add-in Wizard.
The Visual Studio .NET Development Environment

Before taking the time to develop macros and Add-ins, it is helpful for you to understand the
tools that are available out of the box. Now that you know how to customize your personal
development environment with My Profile, let's look at the tools provided by Visual Studio
NET.

Preferred Access Connection

This option determines the means of access your projects will use when creating and
modifying your web projects. To use the option, follow these steps:

1. From the Tools menu select Options. The Visual Studio .NET Options dialog box
appears.

2. Select Projects, then choose Web Settings. The Preferred Access Method option
allows you to build web applications using a file share or FrontPage extensions.

3. Select the File Share option and press OK.

Solution Explorer

In Visual Studio .NET "speak," a solution is a combination of projects that uses programs to
solve business problems. The Solution Explorer displays a list of all projects, files, and
directories of the current solution in a hierarchical or tree view. In addition, all files and
directories beneath the project are displayed and accessible.

Dynamic Help

Finding documentation on specific key words and Visual Studio .NET components can be
difficult and time-consuming. Dynamic Help provides list of help topics that are constantly
changing based on what is selected and where the cursor is placed. Links that are provided by
Dynamic Help point to articles and help topics in MSDN.

Searching Help

To search the MSDN knowledge base, select Search from the Help menu. As with the stand-
alone MSDN application, you have a variety of search options from which to choose:

e Filter by: Allows you to limit your search results to a specific language. This reduces
unnecessary search time.

e Titles only: Searches for words in the title of MSDN articles.

e Related words: Searches not only for the words placed in the search criteria but for
different tenses of the word as well as plural forms of each word.

e Highlight search hits: Make it easy to find the information you are looking for within
an article.

o Search Results Window: Displays the results of your search with the article's title,
location, and rank. Each of these columns can sort the results by clicking the column
heading.

Task List

The Task List, formerly part of Visual Interdev and Visual J++, is a central location where
you can track a variety of tasks. The Task List provides a place for keeping notes about the
code and indicating the status of a task or a section of code. You also can filter the different
types of tasks; for example, you can decide to view only those tasks that are generated by
compile errors.

To display the Task List window, select Other Windows from the View menu and then click
Task List. Double-click a task to display code related to it. Follow these steps:

Open any project and place the following comment within any portion of code:

N —

w
<
(@]
c
[0)
=
(@]
c
}_l
Q.
[0)
D
0]
o
=
0]
o
)
[9)
e
o)
c
o
O
3
)
o
-
Q
)
—
—

=
Q
=
()
)
o
()
Q.
-
o]
o
=
()
H
)
[0)
s
=
s
o]
Q.
O
s

5. Close the code window and double-click the task in the Task List that you just created.
The code that is related to the task is displayed.

6. Right-click anywhere within the Task List to sort and filter tasks.

7. Left-click the task under the "!" column of the Task List window to select a task's
priority.

8. Left-click the check box in the status column for your task to remove the task and the
tasks comment in code.

The Task List is an important tool for documenting and tracking work you want to perform,
and for managing general notes for a section of code. Certain tasks are automatically
generated, such as when errors occur during compilation.

Command Window

The Command Window, which was introduced with Visual J++, provides more direct access
to the Visual Studio IDE through the keyboard. The Command Window allows you to search
and navigate through the application as well as to execute commands and run programs.

Commands that search and navigate as well as run commands and programs can also be made
into aliases. You can create aliases for commonly-used commands, reducing the number of
keyboard strokes that are required to complete routine tasks.

Command Window commands also provide flexibility through the use of switches and
arguments. Many of the rules for Command Window commands support rules that are similar
to legacy DOS commands using switches and parameters. All arguments must be given in the
correct order while switches don't have to adhere to any specific order. Like DOS, arguments
with spaces must have quotation marks around them. (For a full list of Command Window
commands with arguments and switches, see the Visual Studio Command with Arguments
article from the Visual Studio .NET SDK.)

To open the Command Window, select Other Windows from the View menu and press
Command Window. The following are a couple Command Window tasks to help familiarize
you with the Command Window.

Creating a New Project

In the Command Window, type File.NewProject Or type NewProj.

Creating a New Project with a Predefined Alias

The alias for a new project is np. Type np in the Command Window to create a new project.
Creating an Alias for Creating a New Project

To create an alias name for a command, enter the a1ias keyword, the alias name, and the
command the alias represents. An example of an alias name is

The alias is available for use immediately. To test the new alias, enter NewP in the Command
Window. A new project is created.

Creating a New Project Using Switches and Parameters

Enter the following command statement in the Command Window:

File.NewProject "Visual Basic Projects\Windows Application" "Projectl"
"C:\Temp"
/sln:cmdSolution

You can also adapt this command statement when you create C# applications or any other
NET application; use the the parameters to determine exactly the type of project you want to
create. You'll notice in the first parameter, visual Basic Projects\Windows

Application, that the first part of the parameter is the same as the Visual Basic Projects
folder and the second part of the parameter is the type of Visual Basic project to be created. In
this case, a Windows Application is created although this project could just as easily be a
Class Library or Web Service.

The second parameter is the project's name. In this case, the project that you create is named
Projectl. You add the Projectl project to the cmdsolution solution as indicated by the /s1in:
switch, which, in turn, is passed the name of the solution. The third parameter determines
where the project will be created. These values effectively represent what would normally be
entered when you create a project manually as shown in Figure 3-16.

. Herw' Proect El
i |
& @

L lLibrary Wirndcees
Coorbrod Librany

Progsct Typs:

o ool aeric Pravjects

2 Whaoal C# Projects

2 Wisual C4-k Proacts

2 Setup and Deployment: Progects

v) Ot Propicts

o el SR Sobstsons :@ __@ a 5

ASPUNET Wb ASPNET wheb ‘Wb Control
dipplbc stion Smvice Libw oy

& prodeck or creating an applcstion with a Windows user Inbaf aoe

e | wandowsipocationt
Locaton |¢.:'|h-a;nl:t:- j Browee., |
™ fdd s Soluon ¥ Choeom Sbotion

Progech wil be oresbed ot SPralectslWindowrppkoakion]

Fhiore o caced | bk |

Figure 3-16: These values can be used at the command line.
Closing the IDE

When closing the Visual Studio .NET IDE, you would normally either left-click the x box in
the upper-right corner of the IDE or select Exit from the File menu. From the command line,
you can simply type File.Exit.

I've described only some of the tasks that are available to the Command Window. To
effectively cover all the features of the Command Window and its associated commands goes
beyond the scope of this book. Take some time to experiment and try commands to see the
benefits the Command Window commands might provide to you.

Tool Box Window

The Tool Box Window, shown in Figure 3-17, is a container for controls that are used by the
NET forms designers, including both Windows Forms and Web Forms. Tools that are
contained in the Tool Box Window change depending on the designer being used.

ﬂ i ewrnleRny
Cipboard Ring 1Y)
General

&8l “oryer Faploeer S8 Tookbox |

Figure 3-17: The Tool Box Window.

Some of the controls that are available include Form controls for Windows Forms and Web
Forms, ActiveX Controls, Web Services, HTML Elements, objects, and the Windows
clipboard. In addition to components, the Tool Box Window can hold code snippets, which
helps to save time and improve productivity.

To add a code snippet to the Tool Box Window, simply highlight the code that you want to
add to the Tool Box and copy it.

You can access code snippets that are stored in the Tool Box Window from the Clipboard
Ring tab. From this point, you can rename the new item in the Clipboard by right-clicking and
then selecting Rename, or you can drag the code snippet into the code window.

Server Explorer

The Server Explorer development console provides access to computer resources on the
network including message queues, performance counters, services, processes, event logs, and
database objects. The Server Explorer also aids development by providing information about
Web Services such as the methods and schema that are used by the Web Service. You can use
drag-and-drop functionality to create references to Web Services in order to reduce the time
that is necessary to prepare for programming remote methods.

Accessing Remote Network Resources

To add a remote computer to the Server Explorer double-click Add Server (Figure 3-18).

Add Server m

To correct bo & e server, enter the compuber name, o IP
addrass balow:

Comouter: [Bob|
Example: servermams

Conrmck using & differsnt user name

o4 Cancel

Figure 3-18: Connecting to a remote server resource.

After entering the name of the server that you want to add to the Server Explorer, you can
select the different user name hyperlink to connect with a different user ID. Once you've
connected, a variety of resources are available for drag-and-drop programming (Figure 3-19).

-Sﬂw . Em = * Tookhox |

Figure 3-19: Remote server resources.

Adding a new server to the Server Explorer makes including server components such as error
handling and performance counters easier to add to your project.

Document Window

The Document Window allows you to write and edit code, and include all windows that
display actual content such as the Visual Studio .NET home page and MSDN articles. The
Document Window is loaded when a component in the Solution Explorer is selected.

The Document Window is a simple component, but it does have some interesting features.
One feature is IntelliSense, which helps to reduce the potential for writing error-prone
applications. Another feature is the tabular feature, which enables you to load and access
multiple Document Windows easily. The tabs for each Document Window are located at the
top of the Document Window screen.

Properties Window

The Properties Window describes the properties or information about a component or Visual
Studio .NET object, such as those found in the Server Explorer window. The Properties
Window is opened by default with Visual Studio .NET; if it appears closed, select Properties
Window from the View menu to reopen it.

The Properties Window is a simple tool that provides you with several benefits. You can save
time when you program by using new components because information about each
component is readily available and graphically configurable. You can change the properties of
the component at design-time as well as properties for the project and project solution.

Object Browser

The Object Browser provides you with access to a variety of information about a particular
component that you specify (such as properties, methods, and events) or components that are
already referenced by your project. Information about the component's namespace, classes,
structures, variable, constraints, and so on, are available. You can access the Object Browser
by selecting Other Windows from the View menu and then selecting Object Browser (or by
pressing CTRL+ALT+J or F2 alternatively) as shown in Figure 3-20.

B sk pploatam] - Mximed VivsdlBaik HET | i - Dl Sawerrr
O OB g B Db Db P WS R

B-i-of WO T
W et e |

B B kel ol o
b Oteos

= L i AT

b AT e TR e
Ry e, om0 o by il st -
o L L oA LD
B, | ot il it =i e e v o YD, i P g o By,
e S, e T YL, O

vk vl ek e n T S o .

=

e

Figure 3-20: The Object Browser.

Customization Options

The Visual Studio .NET IDE wouldn't be complete without providing you with a set of
options to completely customize the development environment to meet your specific needs.
The Options dialog box, which is accessible when selecting Options from the Tools menu,
enables you to change default settings that provide more flexibility and control of the IDE. It's
not necessarily important for you to memorize all the options that are available, but it can be
helpful.

Environment

You can use the Environment tab to change default settings of the IDE. The General page
shows the most commonly-used options for configuring the IDE, one of which is to set Visual
Studio .NET's start-up behavior. For example, you can customize the IDE so that the Open
Project dialog box appears or the last-used project can be automatically loaded.

Source Control

Visual Source Safe is version-control software where you can store code, as well as check out
code for modification and check the code back in. The Source Control tab allows you to
change default settings for source control software. Some of these settings include the role of
a developer, who may be an individual, or a developer role that is required in order to work
with a team of developers.

Text Editor

The Text Editor tab allows you to change settings that related to text editors.

Database Tools

The Database Tools tab manages options for database projects, such as how to deal with error
conditions and default field lengths for creating database tables.

Debugging
The Debugging tab provides a number of options for debugging applications.
Projects

The Projects tab provides options for projects. The most significant option to configure under
the Projects tab is the Preferred Access Method on the Web Settings tab. As you learned
earlier in this chapter, the Preferred Access Method determines how web projects are
accessed.

Visual Basic .NET

Visual Basic .NET is Microsoft's latest release of Visual Basic and has been redesigned from
the ground up to build .NET applications, including .NET assemblies, class inheritance, web
applications, and web services. Visual Basic .NET also includes CLR support for protocols
such as XML, HTTP, and SOAP for promoting of loosely coupled applications.

Creating a Visual Basic .NET Application

The following section enables you to cut your teeth on Visual Basic .NET. The purpose of
this section is not to teach you Visual Basic .NET, but to introduce you to it. With Visual
Studio .NET and application templates, you can create applications easily. The following
steps guide you through creating a Visual Basic .NET application:

1. Start Visual Studio .NET.

2. From the File menu, select New and then select Project.

3. Inthe New Project window, select the Visual Basic Projects folder. You can select
from a series of template applications or create an empty one.

4. Select the Windows Application project icon.

Before pressing OK, select the project name and location. Type the following values

in the Name and Location text boxes (Figure 3-21):

e

In the Name text box, enter VB.NET Hello World..

In the Location text box, enter c: \Projects\..

6.

Note

Add

Now

1.

2.

Miw Project m
Tap b+
Ercject Types: Templsbes: t—l
= Visual Basic Profects A
i) isual CF Projects E .E]
= il s Prcjects Cls Libeary Wirows
] Satup wnd Deployimant Prodesdhs £ ortrod Libeany

=] Other Sropects

[0 vl Stucio Schkiors " , .m'__l

ASP HET Web ASPMET Wb sk Control
Appication Sarvice Librany

O Dot POF Creaiing N Aoplcation wath & Windcews uper Interface

M [0. MET bl Werld
Lestationn: | coiprageet:l =] e |
Frajct will b croatesd at CPraoctslvENET Helo Werkd,

Friom o | e | Mk |

Figure 3-21: Creating the VB.NET "Hello World" sample.
Press OK. The Visual Basic .NET project, supporting files, and references are created.

The directory you create for this project is the location plus the project name. This
means that if you create a new project and use a directory with the project name after
defining the location, you will end up with a directory structure that seems to duplicate
the project name within it. Just remember that the project name also becomes part of the

new directory structure and you'll be okay.

ing "Hello World" Code

you'll add "Hello World" to the text area of the control bar:

Right-click on the Form1.vb object in the Solution Explorer window and select View
Code.

You will first need to expand the "Wwindows Form Designer generated code"
region. Under the comment, "‘Add any initialization after the
InitializeComponent () call" add the following code:

Your screen should look like Figure 3-22.

[[# few fewt MM [shy Dok Seiss oep
E-fi-roc@d 2 LB - B-E ek - o - r
A o EE AN N.
LY e [T] r...-.|.|.| R F R e 1R =
§ [Fitemt BRETT FEEe
: . - - i . 8 AT
B Eries. '1 -r}' n.v.:mw:uu
¢ - S e
B o
b Initis Copgsmant [}
< ¥
- —) ;|
. [y " E
Tuli 3 L r -
o) T (B4 [E =
2l
(]
=]
S p——— -
[— - it
sl Ny - w. B g
Ll * Froese | B
7 el vt

Figure 3-22: The results of adding the "Hello World" code.
Building the Project

To check for errors, build the Visual Basic project by selecting Build from the menu bar and
then select Build again (or CTRL+SHIFT+B). When you run the build, an output screen
appears at the bottom of Visual Studio. If there are no problems, you should see the following
output:

Build: 1 succeeded, 0 failed, 0 skipped

Running the "Hello World" Application

To run your new windows application, select Debug from the menu bar and then select Run.
You have now created a .NET Windows Application.

C#

C# is the first programming language that is written for component-based oriented languages.
Microsoft has taken the best of C and C++, the ease of use of Visual Basic, and the NET
Framework features such as garbage collection, exception handling, and type safety, to create
the new C# language. Like Visual Basic .NET and the .NET Framework, C# supports loosely
coupled applications through the use of XML, HTTP, and SOAP.

Creating a C# "Hello World" Application

To create the "Hello World" application in C#, follow the same steps that are provided for
Visual Basic .NET with the following exceptions (Figure 3-23):

o When selecting a project template choose from the C# Projects folder.

e Name your project CSharp Hello World.

o Place the following code after "/ TODO: Add any constructor code after
InitializeComponent call":

P (8 Ses Pmed @i [swe ok Seedes Heip
S R B e 1 o e
Ahiac FX T3 A% %K.
B e = el t |[Rehma gl - £l i 5
’ " ke <
PR St bl dearid Pna =] [araw N Em I
r B et ey e =
B]
3 [T
g 9 irg
7] dsesnnkiinds
L B ot
Tokos b ALY CORSLTELAT
b »
[=his.Texc = “iriic Barias] =
ot Lok T
= " x
an & | B |
" {510 =
#d o id Mspnse | bool disposing] _
danw
o uLE, Dm0 o
| -)
= £all a1 e

Figure 3-23: The C# sample application.
Building, Running, and Debugging C# Code

Building, running, and debugging C# code is exactly the same as Visual Basic .NET, which
we covered in the previous section. The Visual Studio .NET IDE integrates and shares these
functions with all .NET languages.

ASP.NET

ASP.NET is used for creating web forms with scripting in either Visual Basic or Visual C#. It
can take advantage of all the Visual Studio .NET controls as well as debugging and error
handling. One of the biggest differences between ASP.NET and its predecessor ASP is that
the Visual Basic or Visual C# code is compiled, which allows for better performance and
strong typing of variables. Before ASP.NET became available, all variables in classic ASP
were declared as variant, which is the lowest performing data type. ASP.NET also includes
two new methods for managing application state.

Creating the "Hello World" ASP.NET project

The following series of steps result in creating an ASP.NET application. Before you begin,
you need to have IIS5 or greater installed. For IIS5 to have the extensions that are required to
support ASP.NET, you need to install Visual Studio .NET after installing IISS. Follow these
steps to create the ASP.NET application:

1. Start Visual Studio .NET and select the Web Application project under the Visual
Basic Projects folder.
2. Before pressing OK, you must set up the project directories with the following

parameters (Figure 3-24):

Name HelloWorld
Location http://localhost/

Hinet P o ject
Profect Typss: Templates:]:_ E.
3 Vesaal Bk Projscts ~
228 Vil CF Projects 10 D E E
= “zaal S+ Projacts windows Class Lbrary
20 seaup and Deployment Projpcts Sppication -::m d Lirary

= o Oither Projects

2 el Shudio Sokusions _:? le@ E

ASPRET ek A5 WET Weh el Cartiel
Ao Service Lbrary

A nemert For cresing an sppbrabon seh s W Lser nkaface

Hna: |

Lt [Betn: Foee shera elivtee ' =] prowmss..
Propect vl be ot of b flovatunt fHeoworkd,

_ s | o] amed | w

Figure 3-24: The New Project dialog box.

Note After adding the new HelloWorld web project, you may see the dialog box that's shown
in Figure 3-25. If you do, simply press OK. The Virtual Directory in IIS5 should be
automatically created. If not, consider uninstalling and then re-installing IIS5 and
reapplying the Windows Component Update.

Trob chof gk van rccess moede for Hhis proact i pet o Front=agn, but the project foicer st
ninpepfiocabces Helow wid cannot be opered with FroncFage . he e eonned e

Uinusde: b crste weel project HelloWord hﬂwdmmwlnmhﬁwmﬁgﬂwm
sakershons irc;mlad, EFHIHm'ﬂlmimmnrﬂM £ aeTTd Iy DCOUe bemce Hhe

ot i virtual drectony s not msiked seeoutable. To conect Hhis problen, umthe Inceinet Servoe Manager,
saliacr e wmat corver bivving the orobiem and _cs the Theck Sarver Extancions tad,

H-H: lq\”w.lu-ll-')l.‘ﬂ

ml uwup—um.u _I
Ll

o] cwen | o |
Figure 3-25: The Web Access Failed dialog box.

Once you've created the web project you can begin developing it.
Creating the "Hello World™ ASP.NET Page
To create the HelloWorld ASP.NET page, follow these steps:

1. Rename the file WebForm1.aspx to HelloWorld in the Solution Explorer window or
simply delete the WebForm1.aspx file and add a new one with the desired name.

Note Be sure to close the WebForm1.aspx file from the editor window before you rename it
(Figure 3-26).

. Thes Ha £ b al I d ai had chisrged nos wau Siseted B, Weoud veu il lo sem
s wvarEnn yo Barve ooen over the changsd cretectt o0 delk?

[svin.. | wwmts | oocodrmmmorchorgm | coen | oo |

Figure 3-26: The Conflicting Modifications Detected dialog box.

If you were to rename this file a few more times you would get a dialog with several options,
as shown in Figure 3-26. You have the option to save this file as a different file altogether,
leaving the contents of the original file unchanged. The Overwrite options overwrite the old
WebFormlaspx file with the new HelloWorld.aspx file, which is what you want to do. If you
navigate to C:\Inetpub\wwwroot\HelloWorld, you will find that the actual file names have
also been renamed. The Conflicting Modifications Detected dialog box is extremely helpful
and informs you when your intentions are not clear.

2. Select the HelloWorld.aspx file and press the View Designer button in the Solution
Explorer window.

3. Drag a Label control from the Toolbox on the far right. Right-click on the label and
select Properties.

4. In the Properties Window, type "This is my first ASP.NET application." in the Text
property box. You could do more, but more detail will be covered in Chapter 8,
"Building Forms."

Viewing the "Hello World" Page
Before you view your page, be sure to save your project in Visual Studio .NET.

To view the page, select View in browser from the File menu. The page appears in preview
mode as the new ASP.NET page within the Visual Studio .NET IDE. Right-click the URL
text box and select the Copy option. Start Internet Explorer, paste the URL into the text box,
and press ENTER. Your page runs independently of the Visual Studio .NET IDE. (The URL
of the ASP page appears in the URL text box near the top of the Visual Studio .NET IDE.
This is an easy place to copy the URLs for the ASP pages and paste them into Internet
Explorer for testing.)

Note Because an ASP.NET page is compiled the first time you view the page after you create
or modify it, the page takes a little longer to display. After the first compile, the page
displays more quickly.

XML

The eXtensible Markup Language (XML), is a predefined set of elements that are used for
describing data contained in a document. This standard, created by the XML Working Group
of the W3C, is extendable when new elements are needed to better describe data. One of the
more important aspects of XML is its openness to all platforms, including but not limited to
Windows 2000, UNIX, Linux, OS2, and Mac. XML's extensibility allows for new elements to
describe business or industry specific data types, some of which might include data specific to
the banking industry, automobile industry, musical scores, or biological sciences, such as
DNA research data.

XML is used in nearly all of Microsoft's new .NET Servers. SQL Server 2000 can return data
in the form of XML and receive XML data updates from data grams. BizTalk has also been
retrofitted to support XML for Enterprise Application Integration (EAI) solutions and
workflow processing. The loose coupling of data is made possible by XML and its platform
independent nature.

XML can be used to describe structured documents, everything from the data descriptions to
how the data is presented. XML is also an excellent way to store database schemas. There are
many other uses of XML, but these are currently the most widely implemented.

Examining a Simple XML Document

To give you an idea of what XML looks like, here's a very simple example. This example
does not include data type definition (DTDs), but it does describe name-value pairs for data
about the The Book of Visual Studio .NET:

<?xml version="1.0"?>

<!-- File Name: Book.xml -->

<BOOK>
<TITLE>The Book of Visual Studio .NET</TITLE>
<AUTHOR>Robert B. Dunaway</AUTHOR>
<PUBLISHER>No Starch</PUBLISHER>
<PAGES>687</PAGES>
<PRICE>$45.49</PRICE>
<Rating>5</Rating>

</BOOK>

Web Services

Web services, as discussed in Chapter 2, "Evolution of the Tier Development," provide a way
of exposing remote methods. These methods provide programming logic with access to other
assemblies and data. Web services also fit nicely into the .NET architecture by introducing
loosely connected components.

Web services offer a variety of advantages over classic COM development. For one, they take
advantage of XML and HTTP to provide a method for creating distributed applications that
can pass through firewalls, thus increasing an applications potential customer base. Another
advantage is the services' self-describing nature. Visual Studio .NET automatically generates
XML data structures that are used to describe your web service so other developers know
what public functions are available, the input parameters and data types, and the return data
types. This information is available by accessing the URL of a service's disco file which
stores discovery information describing the service.

Creating a Simple Web Service
Here's a simple example of a web service that accepts two numbers and returns their sum:

Start Visual Studio .NET

From the File menu, select New and then select Project.

In the New Project window, select the Visual Basic Projects folder.

Select the Web Service project icon.

Before clicking OK, you must select the project name and location. Use the following
information to populate the Name and Location text boxes:

bk W=

Name Sum WebService
Location http://localhost/

Note This value should be in the text box by default unless you've already created a web
service with a different location. Visual Studio .NET tracks the last used location to

make programming multiple web services a little easier.

6. Press OK. The web service project and supporting files and references are created. The
dialog box should look like Figure 3-27. If you receive another dialog box entitled
Web Access Failed (Figure 3-28) and you're given the option to "Try to open the
project with a file shared path," press OK to create your project.

Mew Praject =]
Eroject Trpes: Tempiobes: Mﬂ
23 Visual Barsle Projects . - L
|53 visual CF Progects :IHDB E ﬂ
,__I Vil T+ Proects Windows o Librsey Winadoes
| Setup and Deplovment Frojects Bpphcakion Conkrol Librasy
4] | Other Projects
(] el Stk Schutices i @ 4,? Eh
ASP NET Web ASP MET Web Web Coantrol
dpplcaton ervics Libwr gy
i project for greabing YL Yweb semnoes bo uess from other appllcations
fare: |
Lecation: [Htw.mim."r_#msaw 1-] Browse..,. |
Profect will be created at Hip:[BobfSum_WebServer,
g w]| cewd | o |

Figure 3-27: The Name and Location of the web service.

[

Web fiocess Failed

Thes defauit Weo scosss mode for the projedt i sst bo Fle chars, bue the poject Folder &¢
it fiocshued P Web®svics” canot be opened sl e path
| P A 0 v ek B e Wi Gmrvace . Ths mmor nsturmed was:

Liriabile by ireabe Wl prooect Sum _WebServios”. The UNC shige
AP D e oot | Sue. WebSarvice' does rint waist 0 v do rok hawe acoess.

Wit wudi] o T b
¥ Fietry Lesng & diferert Fle chans path

Lecaton [VicorPagelwere votdisum_welsermcs I
T Try b2 open tua project with ErontBags Sarvar Fotermioes
o | caen | wee |

Figure 3-28: The Web Access Failed dialog box.

Note Now you have a project with references and supporting files, which include the
Sum_WebService.disco file that is used to provide discovery information for developers

of your web service.

7. Rename the Servicel.asmx file to Sum WebService.asmx.
8. Right-click on the Sum_WebService.asmx object in the Solution Explorer window and

select View Code.
9. Type the following code after the remark WEB SERVICE EXAMPLE:

10.

11. Public Function <WebService()> Sum WebService (ByVal a As
Integer,

12. ByVal b As Integer)
As Integer

13. Sum WebService = a + b

14. End Function

B B e oo el febe Dow e g
A--FEP LI RE - -) ey all- 2R
e S AN,
-l ST S SEE—) Sl g, B W
i [Fruewin v [(e ey =0 Ik
BSOTT 8 WEET AR, VR, BETY LS 9 e T kA
=4]
<Pl darwios Mararpess 10 *RILELS DINIOEL TR ®) .;_‘l-.-
Pablie ©isse Baryical b ‘:
Exbazins Syaves. Py, Scvases. abdervaey H"""
Hremw
e
4 3
t t EE T =
T - JS TS pET - - aﬂ\. -\-ﬂ
i - n o Alses L - ay e 3w
v - i
¥
=l4la
eieefashed| [Fenlie Foeeeies Sum Tebfrrmse (brdal & i Iuceger,
FYVRL B AN IREREDT AR CRURERT
Sum_Pebfaavica = u 4 b
Brd Fuow i
LBl Slass
A (B
il 5 & A -~

Figure 3-29: The results of adding .the \.x}eb sérvice cbde.

To check for errors, you can build the VB project by selecting Build from the menu bar and
then Build again (or CTRL+SHIFT+B). When you run the build, an output screen appears at
the bottom of Visual Studio .NET. If there are no problems, you should see the following
output:

Build: 1 succeeded, 0 failed, 0 skipped

Running the Sum_WebService Application

Visual Studio .NET has already generated all the information that is needed to use the
Sum_WebService and a page for testing it. To view this page, right-click the
Sum_WebService.asmx file and select Build and Browse, or browse to the file using Internet
Explorer. You should see the screen that is shown in Figure 3-30.

< e vleereey MRl | Finod Bl B [inkm]| Hivewr Seawlew] Wl Serdee

b L e Peoms Qo Qebwg o lErekw e
W-g-Fu@ L I - T il =R T
el " R EAaE - Besb il e e TP, TE S T '
s Sl e s - S ek beee | hoe e e, B
Iw & D I
Bl Servicel Tal amren um, vl
T e el
v “hr dollrm gy sorrramn s are smppe e For m loma defy e, pleser regrs Be brrice 4 pdP¥Ew
Bl beicmpnes i T 1
X ek
* s Sikdaraie K] Sy W
]
= v ar
Thiy wee b nerwior lu emieg Bty 7 e spari o e i delsalt sammgece . H —
o pwei phws . Chgogre e dela ol prmegae briom U 10948 Bieh werrioe i mede
e T L]
Loz diL =2 pors o8 = A B SereE WETRERESE 8 Her e o sl crzaer w2 demnegurh £ haan Sur e =
il ey we S ek e S e ant o gsnishie des B H) ek preewen B 2 mader L= =
dlu U Y, D Pl P] EHL Bl G O8E ET e LR S D el P4 T FLi % _Il
TS KN el aderd) B 0 d nfel? Ty & SRS 14 T (de ondienl T s eTplE, 1o nEE mis B srmnrd k=]
BT COIT S | T T relT i a OF b e danac e, ASwowoh man s THL el Lere o - Sld A Coeme —
1 ¥] -
ETITS BN e
[=
£ * :ru |l.l
L]

Figure 3-30: The Servicel disco web page.
Testing the Web Service
To test the web service, follow these steps:

1. Type 2 in the parameter a text box and 3 in the parameter b text box.
2. Click the Invoke button. The results should look like Figure 3-31.

o fawn W nRaremr Lot Wil Mile HET [decen] Bripe bl S B e ree i
Es [B g Puiwl BB [y Dek M= S
B-m-@F el b Frra] SR T
B O 8B oot W) L et . - .
F ol . 3 - (L ¥ mdﬂ.-mrmh-hl 1= Shlowbal. ¥ X
'Y BE DS
o e st o0 anteing="utr-0* T
; cod awires Tllp s ol =Soinle 0¥ e e
Privin
‘] deipnl
H aljr -
e
R
[
£)
LB E: o
=T I]

L T
L —3
(TR Sr——
S e
Cuk ¥ N ademared
o =1
i PO @

ity

Figure 3-31: The XML results of the Servicel web service.

A new Internet Explorer page launches with the answer embedded in an XML document. An
application will know how to parse the XML document to retrieve the results. Because this is
a simple web service, you should be able to parse the document easily in a visual manner.

ADO.NET

ADO.NET can deliver a variety of features for creating scalable web applications. ADO
developers are able to take advantage of ADO.NET objects, although while some behaviors
may be different, many of the older ADO programming techniques still apply.

Scalability

Scalability is one of ADO.NET's primary goals. ADO.NET supports disconnected DataSets to
address problems of database resource usage. Many applications are tightly coupled to their
databases because record sets are not easily passed between layers, requiring that a data
connection be maintained while data is manipulated. This overuse of database connection
resources restricts those same resources from use by other instances of the application.
ADO.NET DataSets can be disconnected from the data source and passed between application
layers, and when the DataSet data is modified, it only requires database resources when
applying the newly modified data. This allows for the use of database resources when
absolutely necessary, which helps the application scale better.

XML Persistence

Portability of data is another ADO.NET goal. ADO.NET supports persistence of data in
XML. XML steams are used for passing data between components and allow for portability
because many platforms already understand XML formats. XML can also be persisted to a
file for use at a later time. Most importantly, XML can be passed through firewalls where
anything not on port 80 might be blocked.

Creating a Simple ADO.NET Project

You'll learn about the differences between ADO and ADO.NET in more detail in Chapter 9,
"Retreiving Data." For now, here's a simple ADO.NET example that writes a DataSet to the
window console.

To create the "ADO to XML File" project, follow these steps:

1. Create a new project with name ADOSample.
2. Drag a button from the toolbox to Form1.vb and change the text property to ADO
Start.

3. Double-click on the button and type the following code:

A e e e e e e e et et e et e et e e e

5. Dim oDS As DataSet

6. Dim oCMD As SQLDataSetCommand

7. Dim strConn As String

8. strConn = "Initial Catalog = pubs;Data Source = localhost;"
&

9. "User ID = sa;password="

10.

11. oDS = New DataSet ()

12. oCMD = New SQLDataSetCommand ("Select title, price from titles"

13. , strConn)

14.

15. oCMD.FillDataSet (oDS, "TitleList")

l6.

17. Dim oRow As DataRow

18. For Each oRow In oDS.Tables (0) .Rows

19. Console.WriteLine (oRow (0) .ToString() & " " & _

20. oRow (1) .ToString())

21. Next

22. Console.In.Read()

23.

2 e e e e e e e e ettt ettt ettt et et et et e e e e e

25. Notice that the project doesn't understand what SQLDataSetCommand is and indicates
this by underlining the code. By placing the mouse over the underlined code, the
message, User-Defined type not defined:

SQLDataSetCommand, is displayed.
26. Scroll to the top of the code window and type the following code under the previous

Imports statements:
e

28. Imports System.Data.SQL

Note The last line of code Console.In.Read () is only to pause the Console long enough for
you to see the results and press ENTER to exit the application.

.NET Assemblies

At their most basic level, assemblies offer a programmatic method for exposing reusable code
through properties, methods, and events. Assemblies allow you to reuse code, which enable
other programs that are written in any .NET language to use them. Properties provide a means
of maintaining data as each property holds a value. Methods are the actions the components
perform. Events are invoked programmatically when certain conditions are met.

Compatibility

Microsoft has moved away from the binary compatibility standard because it does not
encourage support for all languages. A binary component written in Visual C++ can be used
by a Visual Basic application as long as all types used are available in Visual Basic. While
multiple languages can take advantage of a binary COM component, the component is
"vanilla." COM components are often built to take advantage of a specific language,
restricting the richness of the solution. Type-safe compatibility guarantees that any .NET
language can use all data types of any component written in any other .NET language by
requiring the enforcement of the CTS (Common Type System).

The important distinction to remember is that COM is not a part of .NET's components. While
components may act and feel the same as classic COM, the plumbing has been changed.
There is no more COM. COM+ and Enterprise Services are a different matter and are
addressed in Chapter 12, "COM+."

Building Blocks
NET assemblies are the building blocks of the middle tier. These components include the

Facades assemblies for simplifying or buffering the User Services tier from the complexity of
Business Services assemblies. The Business Services assemblies provide business

functionality, collections classes, business rules, and access to Data Access assemblies. The
Data Access components perform data access on behalf of all business components. All these
services and anything out-side Data Services and User Services are considered .NET
assemblies.

This section gives you a glimpse of components as well as a little hands-on experience with
building components and creating a test application. Very little of this should be new to
seasoned developers except for compatibility changes between classic COM and .NET
assemblies. You'll walk through the creation of a very basic .NET assembly and test
application. More detailed information is covered in Chapter 11, "Other .NET Topics" and
Chapter 12, "COM+", respectively.

Full Name Example Component

The full name example component demonstrates how to build a simple assembly and a test
application. The assembly takes the first and last name as entered by the user, and returns the
full name in a label control.

To create the CompFullName assembly, follow these steps:

1. Create a new Visual Basic Class Library project with a project name of
CompFullName.

2. View the default class, Classl, in the code window. Change the public class to Public
Class CFullName and rename the Class1.vb file to CFullName.vb.

3. Type the following code before the End Class statement of the cFul1Name class:

A e e e e e e e ettt e et e et e e e e
5. Public Function FullName (ByVal FName As String,

6. ByVal LName As String) As String

7. FullName = FName & " " & LName

8. End Function
e

To create the test application, follow these steps:

Add a new Visual Basic Windows project and name it CompFullNameTest.

Make CompFullNameTest the startup project.

Drag 2 text boxes, one label and one button, onto the form.

Clear the text property of the boxes and label text.

Type Submit Names in the button text property.

Right-click on the CompFullNameTest project references folder and select Add
Reference.

7. Select the Projects tab and double-click the CompFullName then press OK (Figure 3-
32).

A e

Rdd Feferemoe

MET |COM Prapot

agipcknd Compononts:

| Copae hew T Tygm Soume | Ewrwry
:Du:r.ll-..m Proet FrBobd Feplcs’ Proseds | Book. . ..
= E Cancel | Hsk

Figure 3-32: The Add Reference dialog box.

8. Add Imports CompFullName to the beginning of the CompFullNameTest code
window.

Note This will allow you to use the properties, events, and methods of the CompFullName
component. In this case, you will only use a single method.

9. Double-click the button entitled Submit Names.

12. Public Function FullName (ByVal FName As String,
13. ByVal LName As String) As String

14. FullName = FName & " " & LName
15. End Function
16.

17. Run the program.

Note At this point your application should look similar to the one that is shown in Figure 3-
33, providing access to the CompFullName component's business logic.

;L,i;l Form1

- Submt Names |

]'u.-‘iliam]Eenr‘.elhum

Wwilliam Bentethunm

Figure 3-33: The CFullName test application.
Summary

In this chapter you learned about a host of subjects that were centered on how to take
advantage of Visual Studio .NET. Visual Studio .NET is highly customizable and flexible,
and integrates several tools that provide information and easy access to common tasks and
utilities. The chapter examined these tools and discussed:

o The Preferred Access Connection option allows you to develop web applications
through file share access.

o The Solution Explorer displays a list of all projects, files, and directories of the current
solution in a hierarchical or tree view.

e Dynamic Help provides a hyperlink list of help topics that are constantly changing,
based on what you select and where you place the cursor.

o The Task List is a central location where you can track a variety of tasks.

e The Command Windows provides you with direct access to the Visual Studio IDE
through the use of the keyboard.

e The Tool Box Window is a container for controls that are used by the .NET forms
designers, including both Win Forms and Web Formes.

o The Server Explorer Window is a new server development console that provides you
with access to remote computer resources.

e The Document Windows are windows in which you can write and edit code.

o The Properties Window is a window that describes the properties or information about
a component or Visual Studio object, such as those that you find in the Server
Explorer window.

o The Object Browser provides access to a variety of information about a particular
component that you specify or components that are referenced by your project.

Chapter 4: The .NET Framework

Cross language integration, cross platform communication, easy access to common classes
and interfaces, installation, and versioning are all developmental issues that commonly plague
programmers. We'll discuss all of these issues and more in this chapter since they are
addressed by the .NET Framework.

The .NET Framework provides a platform for building highly scalable and distributable
applications. The .NET Framework also allows for cross-language interoperability as well as
other features that are discussed throughout this chapter (Figure 4-1).

LHET Framewark

Assemialy

Source
Code

Compiler

Common Language Runtime

1
Intermechate Language (IL)
Metadata

Application

Boundaries Imerfaces

Types Sacurity

AT Compller

h

Matve Code

Runtime Host
Security Cheching]
Windows Form | Windows

ASPIET | VIR | L& Designer Shel EXE

Figure 4-1: The .NET Framework.
The Common Language Runtime

The Common Language Runtime (CLR) is an execution engine that provides the NET
Framework services. This is the core of the .NET Framework, providing both the execution
environment for .NET assemblies during run time, as well as services to aid developers during
the creation of .NET components.

Among the services provided by the CLR are those that aid in assembly execution. These
services include the Microsoft Intermediate Language, just-in-time compilers, metadata,
application domains, memory management, and runtime hosts. CLR also provides services for
developers such as the Common Type System, the namespace, and the .NET Class
Framework. We'll discuss all of these throughout this chapter.

Managed Code

The .NET Framework consists of managed code that is designed to target the .NET
Framework using the CLR. Managed code provides developers with services such as cross-
language integration between all NET languages, component security, version control, and
deployment features.

Microsoft Intermediate Language

Visual Studio .NET compiles code into the Microsoft Intermediate Language (MSIL) which
is processor independent and portable to a number of platforms. All .NET languages are
compiled to the same MSIL, making performance between languages relatively the same.

When MSIL code is generated from the source code, all the necessary metadata describing the
methods, properties, events, and data types are created. (We'll discuss metadata later in this
chapter.) One drawback to MSIL code is that it closely resembles the original source code,
which makes it more difficult to protect intellectual copyright.

Just-In-Time Compilers

Microsoft provides a set of Just-in-Time (JIT) compilers for each supported platform. These
compilers compile MSIL code into native machine code, so the JIT compiler is no longer
needed to run the component. The compilation results in slower method calls the first time the
code is run. However, it is compiled to native machine code, the code performs faster. The
JIT compiles the code to machine code that is specific to the processor running the code. This
offers a considerable performance advantage.

Note Unlike previous Microsoft compilers, the JIT compilers only compile methods that are
being used. The code can be executed more quickly because this reduces the time that is
needed to compile the MSIL code.

Assembly

The assembly is a collection of one or more files that maintain a developer's code and all the
information that is required by the CLR execution environment. The assembly is the unit of

deployment that is used to install a .NET application, including all resource files required by
the application. These files can be bitmaps, JPEGs, and any other file type that is required by
the application.

Note that applications may have more than one assembly. Every unit or application building
block will have at least one assembly, but many applications require several building blocks.
This is perfectly acceptable as assemblies can be configured to communicate with each other
and take advantage of code in the other assemblies.

Assemblies can also be designated as "private" or "shared." A private assembly can be used
by only one application and must be stored in the same directory or in a subdirectory of the
calling application. Other assemblies can use a shared assembly that can only be updated by
the author, making version control safer and malicious hacking more difficult. Usually a
shared assembly is installed in the global assembly cache (discussed later in this chapter),
which is a local cache of assemblies.

The Manifest

Part of the assembly includes a manifest which holds information about the assembly. This
self-describing method of the assembly allows for easy deployment through the use of the
XCOPY command from the command line prompt. Historically, this type of metadata was
stored in the Windows Registry and required the registration of every COM (Common Object
Model) component. This is no longer necessary because the information is stored exclusively
in the assembly manifest.

Note The manifest can be stored in a separate file or as part of a module, such as an .EXE
(executable) file or DLL (dynamic link library).

Among the information that is stored in the manifest is the name and version of the assembly.
This is essential when an application is dependant on a specific version of an assembly. All
other assemblies that depend on the assembly are stored in the manifest and help to determine
if all required code for the application is available. To allow other components to
communicate with the assembly, all of the assembly's data types are described in the manifest.

Additional security information for the assembly is also described by the manifest and
includes three possible security settings and the assembly public key, which guarantees
uniqueness of the assembly and identifies the source of the assembly. The possible security
settings are

e Required security.
e Optional security.
e Denied security settings.

Providing the ability to store all metadata within the assembly has an additional benefit.
Because .NET assemblies no longer require a special installation to record metadata about the
assembly in the Windows Registry, you can simply copy all .NET assemblies to a given
location and run them. As a result, .NET assemblies can be run directly from a CD-ROM that,
by its very nature, is readonly. This also means that complex installation programs are no
longer needed. You can simply write a program that installs your .NET application and run it
when the CD-ROM is inserted into the CD-ROM tray.

The metadata that is stored in the manifest is fully accessible through the use of the Reflection
API. By using this API, the metadata can be extracted into XML format.

Assembly Versioning

Assemblies simplify versioning and interface development, allowing developers to determine
the versioning rules by specifying the version the assembly is allowed to use.

Interface development in COM required that all assemblies maintain backward compatibility
when upgrading an assembly to support new features; COM allowed only a single version of
an assembly to be registered with the operating system at any given time. .NET assemblies,
however, are not specific to a machine but specific to an assembly, allowing the installation of
multiple versions of the same assembly on the same physical computer. When a .NET
assembly is upgraded, the older assembly can remain installed to maintain backwards
compatibility for applications that are still using it.

Global Assembly Cache

Assemblies that are designated as "shared" are stored in the Global Assembly Cache. These
assemblies are accessible by multiple applications on the computer. (Installing assemblies in
the Global Assembly Cache requires administrative privileges to the machine where the
assemblies are installed.)

Assemblies that are installed in the Global Assembly Cache are similar to COM components;
the components cannot be accessed except through a single controlling force. In the case of
assemblies, this is the Global Assembly Cache, whereas in COM it was the Windows registry.

Application Domains

Applications have historically separated or isolated memory access and application variables
through process boundaries, which could not communicate directly with each other.
Application assemblies, however, can access each other and run within the same process. To
provide boundaries for assemblies, the CLR enforces boundaries through Application
Domains that improve both performance and scalability; they eliminate the high overhead that
is required to communicate across processes.

Common Type System

With classic COM, the standard by which a binary component could be classified as a COM
component, which allowed other types of components to understand interfaces even other
components that were written in a different language. The problem with binary compatibility,
however, is that each language supports different data types that are not necessarily
understood by other languages. As a result, components intended for use by multiple
languages were forced to cater to one language or the other. Also, type conversions needed to
be performed every time data was exchanged.

With the Common Type System, all data types are provided as objects in the System.0Object
class. This class is accessible by all .NET programming languages and enforced by the CLR.
With the Common Type System, it is no longer necessary to cast data types between
assemblies that are written in different languages. The Common Type System provides for a
new standard for NET Assemblies, which is called Type Safe Compatibility. Binary
compatibility is a thing of the past except for backwards compatibility.

To accommodate this Type Safe Compatibility, some languages will have to adjust their data
types. For example, the Visual Basic .NET integer is no long a 16-bit data type but a 32-bit
one.

Table 4.1 identifies .NET data types and their corresponding sizes. Each .NET language must
adhere to the specifications of these data types. Some languages, such as Visual Basic .NET,
may support their own name for these data types, but the language compilers must convert the
specific data types to the data types that are shown in the following table. For example, to
declare a System.Int32 data type, Visual Basic permits the use of the Integer keyword. The
variable that is declared as an Integer is actually of type System.Int32. It is safer and a better
practice to use the Qualified Names of data types because these are common among all .NET
languages.

Table 4.1: NET Data Types and their Corresponding Sizes
Qualified Name Data

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

Type
Boolean Boolean
Byte

Byte

Char Char

Decimal Decimal

Double Double

Intl6 Short

Int32 Integer

Into64 Long

Object Qbject

Sbyte Sbyte

Single Single

String String

UIntl6 yshort

UInt32 yint

UInto4 ulong

Size

32-bit or 4-
byte

8-bit or 1-
byte

16-bit or 2-
byte

96-bit or 12
byte

64-bit or 8-
byte

16-bit or 2-
byte
32-bit or 4-
byte
64-bit or 8-
byte

32-bit or 4-
byte

8-bit or 1-
byte

32-bit or 4-
byte

Upto2
Billion
Characters
16-bit or 2-
byte

32-bit or 4-
byte

64-bit or 8-
byte

Description

Holds values 1 (true) or 0 (false).
Holds unsigned integer values 0 to 255.
Holds unicode characters.

Holds values up to 28 digits on either side of the
decimal.

Holds negative values from -
1.79769313486231E308 to -4.94065645841247E-
324 and positive values from 4.94065645841247E-
324 to 1.79769313486232E308.

Holds signed integer values -32,678 to 32,767.

Holds signed integer values -2,147,483,648 to
2,147,483,647.

Holds signed integer values -
9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

A reference to an instance of a class.
Holds signed integer values 0 to 255.

Holds negative values from -3.402823E38 to -
1.401298E-45 and positive values from 1.401298E-
45 to 3.402823E38.

Unicode characters.

Holds unsigned integer values -32,678 to 32,767.

Holds unsigned integer values -2,147,483,648 to
2,147,483,647.

Holds unsigned integer values -
9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

Runtime Host

The Runtime Host that is provided by the CLR creates and maintains the environment for
NET applications. Visual Studio .NET currently ships with the ASP.NET, Internet Explorer,
and Shell Executable runtimes. Third-party developers are able to develop more runtime hosts
with APIs that Microsoft provides.

Namespace

The concept of a namespace is important to .NET. The .NET Framework object library has
been organized hierarchically, and access to an object within the object hierarchy can be
through a fully qualified name. This fully qualified name includes the root and every level
leading to the object; for example, in System.Diagnostics.Debug, System is the root.

Before developers can access an object, the root of the object must be imported. The Imports
statement makes the namespace available so you don't have to use a fully qualified name of
the namespace. After the desired object has been imported, it can be accessed through the
qualified name; however, it is easier to access the object when you import part of the
hierarchy with the root. This means that you can use only the unique object name; the same
object can exist in multiple areas of the hierarchy because it is the path to the object that
makes the object reference unique. If the same class name is used in more than one imported
namespace, the fully qualified namespace or at least enough of the namespace to distinguish
the class must be used.

All projects have a namespace property that is accessible through the Solution Explorer.
When a project is created, a default namespace is created; however, this default namespace
can be changed so that your objects can be accessed through the same namespace.

.NET Class Framework

The .NET Class Framework, also referred to as the NET Base Classes, is a set of object
models that provides easy access to base functionality thought a common namespace. All
objects in this framework are accessible to all .NET languages. The .NET Class Framework
provides a variety of base services divided among a variety of second-level namespaces under
the system namespace. These second-level namespaces include base services such as data
access, security, collections, XML, error handling, and threading.

Before the .NET Class Framework, each programming language required its own class
libraries. All .NET languages share the .NET Class Framework, requiring no special-language
specific libraries. Developers no longer need to learn the Visual Basic or Visual C++ class
libraries for accessing data or debugging because all languages use the same Class
Framework. Even the syntax that is used to perform the same task between .NET languages
looks the same because you must use the same namespace and parameters. All language-
specific features have been moved into the .NET Class Framework to enable all NET
languages to take advantage of the functionality.

Base functionality that is provided by the .NET Class Framework aids in a number of regular
programming tasks. For instance, all data access is accessible through the system.Data

namespace. Access to debugging information and security are accessed through
System.DiagnosticznuiSystem.Security,respecﬁvebﬂ

Table 4.2 includes second-level services that are provided by the .NET Class Framework. All
NET Framework development relies heavily on the classes that are available in these
namespaces. You will benefit by becoming familiar with each namespace and its related

classes.

Table 4.2: Namespaces and Their Related Classes
Namespace

Category
Data Access

Component
Model

Configuration

Framework
Services

Net

Programming
Basics

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

System.

Data

XML

CodeDOM

ComponentModel

Configuration

Diagnostic

DirectoryServices

ServiceProcess

Messaging

Timers

Net

Collection

I0

Text

Description

Contains a set of classes supporting
ADO.NET data access.

Contains XML classes that provide
standards-based support for processing
XML.

Contains classes that represent the
elements and structure of a source
code document.

Contains classes used for building
.NET components.

Contains classes for configuring
assemblies and writing installation
programs.

Contains classes for debugging
applications.

Contains classes necessary for
accessing the active directory.

Contains classes for installing and
running services.

Contains classes for sending and
receiving messages on the network.

Contains classes for programming
events to occur on re-occurring
intervals.

Contains classes providing an
interface for programming targeted
toward network protocols.

Contains classes for building and
manipulating a variety of data
structures including lists, queues,
arrays, hash tables and dictionaries.

Contains classes for manipulating data
streams and files.

Contains classes for manipulating and
converting text data.

Table 4.2: Namespaces and Their Related Classes

Category Namespace Description
System.Threading Contains classes for building multi-
threaded applications.
Reflection System.Reflection Contains classes for reading and

manipulating component or assembly
metadata or manifests.

Rich Client Side System.Drawing Contains classes for accessing GDI+
GUI functionality.
System.Windows.Forms Contains classes for building
Windows applications.
Runtime System.Runtime.Remoting Contains classes for building
Infrastructure distributed applications.
Services

System.Runtime.Serialization Contains classes for converting data
into a searialized byte stream.

NET Framework System.Security Contains classes for supporting .NET
Security Framework Security.
Web Services System.Web Contains classes for communication

between browsers and servers.

Note A Class Browser application is provided by the .NET Framework. You can find the
application in the c:\Program Files\Microsoft.NET\FrameworkSDK\Sample\. After
it is installed you can run this application from http://localhost/clsview/Default.aspx.
This application allows you to navigate through all classes that are provided by the
NET Framework.

Summary

The .NET Framework is the heart of Microsoft's .NET initiative. Development issues are
addressed by components of the NET Framework:

e Managed code is code that is written to target the NET Framework.

e The Common Language Runtime (CLR) is an execution engine that provides all the
NET Framework services.

e Visual Studio .NET compiles code into a Microsoft Intermediate Language (MSIL)
that is processor-independent.

e Microsoft provides a set of just-in-time (JIT) compilers for each supported platform.

e The assembly is a collection of one or more files that maintain a developer's code and
all the information that is required by the CLR execution environment.

e A manifest is the part of the assembly which holds information about the assembly.

o Developers can determine the versioning rules of assemblies by specifying the
assembly version that your component is allowed to use.

o Assemblies that are designated as "shared" are stored in the Global Assembly Cache.

e Application Domains improve both performance and scalability because the high
overhead that is required to communicate across processes is eliminated.

e Common Type System provides a common set of classes from which all NET
languages can create data types.

e The Runtime Host that is provided by the CLR creates and maintains the actual
environment in which .NET applications run.

o Namespaces provide access to objects within the object hierarchy, which you can
import to provide easier access to component classes.

e The .NET Class Framework is a set of object models that provides easy access to base
functionality through a common namespace.

Chapter 5: Visual Studio .NET Tools

Overview

Visual Studio .NET provides a wealth of tools to aid in the development of new applications
and the support of delivered applications. Some of these tools have been around in the
Microsoft development environment for several years and have improved; others are
completely new.

The Event Log that was introduced with Microsoft's Windows NT 3.1 remains an important
component of Microsoft Windows 2000 and Microsoft Windows XP. Nearly all applications
that run on the Microsoft platform use the Event Log to record application performance data,
and, with the introduction of Microsoft Windows 2000, your application can have an Event
Log dedicated to it. We will be building an application that will create an application Event
Log and allow you to save informational, warning, or error messages to it. We'll also discuss a
variety of debugging tools for inspecting your application while in development.

Many .NET Framework applications can technically be deployed using a simple XCopy
command, while others require packaging and deployment, which can be a messy experience
if a set of good packaging and deployment tools are not available. Visual Studio .NET
provides several packaging and deployment wizards and project types. We will package and
deploy our Event Log application, then follow-up with a walkthrough of the installation.

The Event Log

The Event Log is a central location for system and application events to be recorded. Events
can be defined as anything that happens to any system resource or application, and recording
every event will quickly fill up the Event Log in its default configuration. You should keep in
mind the following:

e The Event Log is not included with Visual Studio .NET. However, it is provided by
the Windows operating system.

o The Event Log is a central location for system and application events.

e The Event Log is a tool that must be managed to take full advantage of it on behalf of
your application.

 Filters can be placed on the Event Log for ease of use.

o The Event Log is helpful when tracking your applications performance after
deployment.

The Event Log should be used to record useful information only, although what you consider
useful will depend on the environment's security needs and the application's security and

reliability needs. Most applications require errors to be logged to the Event Log while secure
environments require logging of all resource usage or denied access attempts.

Accessing the Event Log
You can access the Event Log in several ways. The most common way is by selecting Event

Viewer in the Administrative Tools folder. The Event Viewer (Figure 5-1) displays and
manages event logs.

B Bvwnl v | ;-'-'lml
Bl G e pep
- AESEE &

e e] Apple wtirs A8 e i)
: Tvps | Dk | Tiinms Sour -
F*. - erif Bhisformaton SRR LUTWRN Peiretele

4 Syt Elaformaton SI4EIE LIPS Palrotsls
EHsformaben 542002 LI Mufretale
Eneformation Bh42002 LZZediPR Mlred ol
A sf 400 LESE . EvewSyien
Esformaben Sh4)2002 LE-EEE . WM PP dere
Dhsforeaton SH4TIR WD .. Crostive Sorvie for €

Disiormaton SR LISRIT ., EAROL
Whisorabon SH4S0E L0EEN .. WHDM PMED Servis
Wiwformeton S4700R LM ... Creslive Servios for ©

V!I!EZEEFEE?EE!E!IE'E

Dwiomaben SRR LEREL .. DAPOL

Sywarng EE T S T

Brieforwaon SRATTIR HEHe LoscPed

Eisiormaben SM4/2002 LED0E .. LoscPed

Arwormaren Sha02 RS L LnadPas

Eieformakion Sl42002 1.3 4L] inacPed

th'mdﬂ Sr14) 200 DEERTY .. DM PEP darviee o

€

Figure 5-1: The Event Viewer application used to view and manage event logs.

While Visual Studio .NET does not provide the Event Log, the new Visual Studio .NET IDE
provides access to it through the Server Explorer window as shown in Figure 5-2.

2 it Dwva prrrt. Lo wmsed [Sieign] - Slirt Fage

[T

o [meani |

[AFAFT 182880 P sk ke | T
T O —— .
T
iy Ilw.wlllr\-r Sy Dageko v
L t |!|| =
* [~ Se———

B M e
o] ThE o e e b ey

§ ot
| Homcc pies - B Bt |)

2

Figure 5-2: The Server Explorer as implemented in Visual Studio .NET.

Event Types
The Event Log supports five types of events and not all information in it indicates a problem.
e Information events: Indicate the successful completion of a task.

e Warning events: Indicate that a task completed successfully but a problem or potential
problem may exist.

e Error events: Indicate a problem that should be addressed (a task may have been
interrupted or failed all together).

e Success and Failure audit events: Indicate successful or unsuccessful attempt to access
system resources. (These two events are used in the Security Log.)

Event Log Types

By default, there are three log types available when either Windows NT or Windows 2000 are
installed:

e Application Log: Records events for all applications programmed to use it.

e Security Log: Records all information concerned with access to resources where
auditing is turned on.

e System Log: Stores information about all system level events.

Managing Event Logs

To manage an application's event log, right-click the log and select Application Properties to
open a dialog box (Figure 5-3) where you can view or modify its properties. Here you can
find information on the log size and set the properties that determine how information is
logged and made available.

Application Properties E@

“General Fikry
[izplay name: Erplicaticn
Log name |G NWINDOWS \systemE2\confighappE venl Evt
Sze 54.0 KB (55575 bylkes)
Crested ‘wadresday, Ociober 24, 2000 82202 AM
Madiied: Tuesday. May 14. 2002 17:57:26 AM
Arcmssed Tuesday, Map 14, 2002 175726 4M
Log size

Maimunlog size: (512 (20 KB
When maximum log sizs is reached
(®) Qverwnte event: a: needed

() Oerwdile sverits oldet than dags

() Do not ovenwite svents
[clear kg meanuk] Bestore Defauls |
[] Usng 3 love-speed connzchion | Clear Log

o) [cwen

Figure 5-3: The General tab in the Application Properties dialog box.

By default, the log is configured to overwrite events that have been logged more than seven
days ago. The problem with this default configuration is that its maximum log size is easily
exceeded before seven days have passed. When this occurs, you will receive a dialog box
indicting that the log file is full.

To keep the log from filling up, you can select the Overwrite events as needed option,
although when selected the oldest events will be overwritten, which may be undesirable in a
production environment. Another option is to increase the maximum log size, which will
immediately resolve the problem of having a full event log; however, though the log file may
still fill up before events are overwritten. Finally, the event log can be configured to require
manual intervention to clear the log. This is the desired option for production environments
because it enables you to save the log to a file before clearing it. All logs for a production
system should be kept for troubleshooting.

Filtering the Log Viewer
The Event Viewer can be configured to filter out events to make the log easier to view and

scan for specific kinds of events. Figure 5-4 shows the Filter tab that includes options for
selecting the log viewer's settings.

Application Properties

| Genesal Fiter
Ewvarit typae
[l Infoumatiar} [#] Suecess audi
[¥] e amiing Faure audt
[w] Enrgr

Evenit source (& v

Categons L&) ~

Every I0:

k-]

CompLter

From: |F|le-.--:~nt wl | 143072002 10.00.56 P4

T |LmlEvu:>rd ol | 5444200
Festoe Default: |

| ok || Comcel |

Figure 5-4: The Filter tab in the Application Properties dialog box.

Another way to make it easier and less time consuming to view logs is to copy an existing log
and customize it for viewing specific kinds of information.

For example, to create a new log, follow these steps:

1. Open the Event Viewer from the Administrative Tools folder of the start menu.

2. Right-click the Application Log event log and select New Log View.

3. Right-click on the new log view and select Rename. Rename this log view
Application Log (Errors).

4. Right-click the aApplication Log (Errors) event log and select properties. Select the
Filter tab.

5. Deselect all Event Types except the Error event type.

6. Press OK.

The result is an Application log that you can quickly and easily reference for all error events,
as shown in Figure 5-5.

B Lyt Viewsr

Fin Afion Yo Hop
-+ OE XFHE &
Ll:ml'.\:-—u flax &) Epnainr agErors) Floved veme g 2ol 86 gt}

My At L | e | Tera SEures oty
[l e : : :
ﬂ 3._ i Nintng CROHET o A0 a0 Bl (R[] }]

Eorw A e G500 PH ASPOMET 1 £.YME A i

€ »

Figure 5-5: The new Application log created for viewing errors.
Logging Application Events

Application events help to debug applications and track their status. While events for
applications can use the Application Log, it can be beneficial to create an event log specific to
your application.

For example, to build a simple application that will allow you to create and manage an event
log and add each type of event to it including additional information that may be helpful for

debugging and monitoring and applications performance, do the following:

1. Open up Visual Studio .NET and create a new Windows Form application named

EventLogApp.
2. Now import the system.Diagnostic namespace.
B e e e e e e e e e e e et e e e e e e e et e e e
4. Imports System.Diagnostics
D e e e e e e e e e e et e e e e e e e

6. Drag six buttons, three text labels, and three text boxes onto the form and arrange, as
shown in Figure 5-6.

13.

14.

15

18.
19.
20.

:...- Foarm1

[-B/X]

Apohcation Name

whamning Entry
Emca Eriiy
Infioemnational Ertrg

Create Liog J
Clead Log
Remove Log

Figure 5-6: The Event Log Sample applications user interface.

Name your controls and captions based on Table 5-1.

Control

Form

Command Button
Command Button
Command Button
Command Button
Command Button
Command Button
Label

Label

Label

TextBox
TextBox
TextBox

Table 5-1: Controls and Captions
Caption

Event Log Sample App
Create Log

Clear Log

Remove Log

Warning Entry

Error Entry
Informational Entry
Event Log

Application Name
Message

Name

Forml.vb
cmdCreateLog
cmdClearLog
cmdRemovelLog
cmdWarning
cmdError
cmdInfo
IblEventLog
IblAppName
IbIMessage
txtLogName
txtAppName
txtMessage

Protected Sub cmdClearLog Click(ByVal sender As Object, ByVal e

Try

As System.EventArgs)

. Handles cmdClearLog.Click
16.
17.

Dim Eventlog As New EventLog (txtLogName.Text)
Eventlog.Clear ()

Catch

MessageBox.Show (Err.Description)

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43.

44,
45.
46.
47.
48.
49.
50.

51.
52.
53.
54.
55.

56.
57.
58.
59.
60.
61.
62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

73.
74.

End Try
End Sub

Protected Sub cmdInfo Click(ByVal sender As Object, ByVal e
As
System.EventArgs)
Handles cmdInfo.Click
Try
Dim Eventlog As New EventLog()
Eventlog.WriteEntry (txtAppName.Text, txtMessage.Text,
EventLogEntryType.Information)
Catch
MessageBox.Show (Err.Description)
End Try
End Sub

Protected Sub cmdError Click(ByVal sender As Object, ByVal e
As
System.EventArgs)
Handles cmdError.Click
Try
Dim Eventlog As New EventLog ()
Eventlog.WriteEntry (txtAppName.Text, txtMessage.Text,
EventLogEntry
Type.Error)
Catch
MessageBox.Show (Err.Description)
End Try
End Sub

Protected Sub cmdWarning Click(ByVal sender As Object, ByVal e _
As
System.EventArgs)
Handles cmdWarning.Click
Try
Dim Eventlog As New EventLog ()
Eventlog.WriteEntry (txtAppName.Text, txtMessage.Text,
EventLogEntry
Type.Warning)
Catch
MessageBox.Show (Err.Description)
End Try
End Sub

Protected Sub cmdRemoveLog Click(ByVal sender As Object, ByVal e
As
System.EventArgs)
Handles cmdRemoveLog.Click
Try
EventLog.Delete (txtLogName.Text)
Catch
MessageBox.Show (Err.Description)
End Try
End Sub

Protected Sub cmdCreatelLog Click(ByVal sender As Object, ByVal e
As
System.EventArgs)
Handles cmdCreatelLog.Click
Try

75. EventLog.CreateEventSource (txtAppName.Text,
txtLogName.Text)

76. Catch

77. MessageBox.Show (Err.Description)

78. End Try

79. End Sub

< 0t

The EventLogApp is an easy application to use and is by no means the last word on how to
take full advantage of the event log. After all, every application's needs are different.

Before you can add any event log messages you must create a new log and specify an
application to use it. Once created you can add error, informational, or warning messages.
Once you've had enough you can clear or remove the log altogether.

Debugging

Once upon a time, debugging an application meant running the code and hoping to get an
error message that would tell you the line number on which your application failed. The next
step was to print your application code on that wide green and white striped paper with holes
on each side and take it home. Then you would spend the rest of the evening reading through
the code with a marker, circling different variables and making notes. Finally, you might have
had a few ideas to try and headed into work. The next day was much of the same.

For the last decade we've had a number of debuggers with several tools for investigating
different aspects of the problem. These tools speed up the process of debugging applications
and allow the developer to spend more time addressing business problems and less time mired
in code searching of a simple syntax error.

As programming techniques have advanced and the interaction and coordination with a
variety of different platforms has increased, there has been a need for more advanced
debugging tools. Visual Studio .NET provides numerous debugging tools (shown in Figure 5-
7), including windows for viewing internal aspects of your application while it runs, advanced
tools for managing break-points, and the ability to quickly and easily access code which may
reside in a number of different components:

e The Locals window displays all variables in the current procedure.

e The Autos window displays all variables in the current and previous statements.

o The Watch window displays values for selected variables.

e The Quick Watch dialog allows for quick viewing of any variable and works closely

with the Watch Window.

e The Call Stack window displays the names of functions used to the point of current
execution.

e The Command window is a replacement of the immediate window provided by Visual
Studio 6.

e Breakpoints stop execution while you examine your applications state.

ol g e+ bl W | b BT T i) Wit [D] [Pl 19l

gt M
E-r-dED i A b g Freveeie) 1= 5 -
-3 Y I ¥ :_g_ B e AN
I e LS bt . -
mr— o e L S T
-] o L=an L U TR
i e e @ 1w OHeakpa®, T st pllons [rotec)
: : B T Bl il :L:.“.
! D) et sst e e Ormdter bk
| ; 0 T e i)
|— k e "
- ¥ | pumeti CeaaD
_“.r.-:‘:* l‘ i] maqpasi [T PrY
Lax Loim B e et el s & [| —r——
L] 1= LE
[y [Tres [-
B Ty
gl "] “levilog* arm g
By s | Bl b s Ehl'lﬂliﬂ'- s] ol wwebns | (] ¢
Pzl]

Fgure 5-7: The many gils available at ntime.

The following sections will talk about these tools in more detail.

Locals Window

The Locals window (Figure 5-8) displays all variables in the current procedure. All values in
the Locals window are updated only when a breakpoint is reached. During execution, the

values displayed become outdated until the next break-point; during a breakpoint you can
modify these values.

o lvrrRaghep M ewie N el Deii LT [Eeos] e, v [Feed elg]
e O v fuemd uid ey ek Brebe e
Bou-;-l@ L R SR - - R - | g ey -
B b5 ek,
b oi o om0 TN Ay e | e g [F] bk cglop ace = Thesad [[L68] chxham s @ =
ok b el # b = | Solibon Eploer - EmeagRon W
Rl =] iy R e L
=] FEStected SuE cvdCiesclsy C1LEE |BFVEL ender Le OBjesi. VT @ Shton Tamloohed |l oratetl
] hn Spscen. Ewsar_| - Fm |
= l o] Rsemesn [Hes
"N
Ly
S
(] Sucme. wirus, fi0mm Py i vermghyes.f =il = Pt A
e [t v Fories Lol P o i e 48
H] _Blwreog AZqitem Syoaed Fo Laed SAan e e 1
K yiben wedim Pt Bba | Sy dot vy i
] e sl B e a 3
T bopptie e deviesse, Feaves | whal] - 4
| _praboerey LW Sl R AT Sram 15
E_prerelon vt e P Bk | T i
3] _crdl oy {1 B SVl JE R TR 1
ot g [Tyt wrwimen Forps Bt | e o T i
1 T - {Frstem oaines v, Tostlias - St shem wnvieam Frmp
il _bf g e i L v v i ir
LI A e P b e L
et il el g Srviemn i) Lt Pl [T Db
[~ [P | = T
waats I 15

Figure 5-8: The Locals window.
Autos Window

The Autos window (Figure 5-9), in break mode, displays all the variables and their values for
the current and previous statements. The values of the variables can be modified while in
break mode by double-clicking them in the Autos window and inputting new ones.

"2 Ll p - Mecrael] Wivsel s M1 | boeak] - Form] vl [lecd Usly]
D D few feen 0 (e [e e

Wik W@ ol - E-R s = | g -1
] “ “5
o P BT e E e, Wowes (9] Liloator we o Breed (L] < ke =
T P v
e | T 5 ==)
= BvERL L. ChEE (§ - E#&r Trwllocler lLovet &
nee, I Dranikroies &

i o Sehonoin | lE

Cdset -
e LG
© e cgpppurast i By
= oreartiochll (ydem Sacresbrs FasBindl 30900 Syeess i
P a0 Frm
Do ogey ST 4 bl e g Herg i
= [P " e v A" ke
P U “rateraniog 1L Hrrg 1
AR WAL S 1
e ¥ Tegm " i
b il T 1 itrom
Bk A [] i
RO RN B 122 fim i
TR S0 W ROk 130 T 1
IO 0%, F L [v i
- Y R B - T " i
W i Ay T b 1 e T, B
[= T - - - B = = 2
and

Figure 5-9: The Autos window.

The Watch window, which is discussed in the following section, is similar to the Autos
window except that all values are automatically tracked in the Autos window while only
selected values are tracked if you specifically add them to them to the Watch window.

Watch Window

Like the Locals window, the Watch window (Figure 5-10) displays information about
variables including the variable name, value, and type. The Watch window differs from the
Locals window because it displays values for variables specifically requested while the Locals
Window displays all variables in the current procedure. Another significant difference is that
values in the Watch window are always current, which means that you can trust the values
they display while your application is running.

2 Dvrvlaghap Warai T Viveal Daskc T [beead] - Do 1ovde Rl Qolg)
i gef e fomd i [ehy ek mnde pmo
TR Sl RO E | 8 e - | -1
L N W
» o U TR0 oy e F e Popes [€2] Lemtioghor o = Wread | LSH] < ks v '
Ll g, il ~ sokben Esdler . Lamdogen W
Eavarmi = gty AR N

Selton Trntioghey’ [Lpraist] &
I :
. | S W

E
el eda p— e e -
frs e T TP Sy i SNP e Tom et Mot tngp By n [e et et T Mt 1 SR
| e) trgm 7 1
b e oyt WP balipmiirtt-stiey s
paran Raktrg ant i v L
S AT LE Y i i]
LEr "l Lol Ay W LA L T e
| == - e B [Fe .M B
-

Figure 5-10: The Watch window.

To add a variable to the Watch window, simply right-click the variable in the code window
and select Add Watch. To remove a variable from the Watch window, right-click the variable
in the Watch window, and select Delete Watch. To change a value in the Watch window,
double-click the Value column and enter the new value.

QuickWatch Dialog Box

The QuickWatch window (Figure 5-11) works closely with the Watch window. This dialog
allows you to take a quick look at variables rather than adding them to the Watch window
then later having to remove them.

« DuickWalch

bkl oghlame, Tesk “Test Log® String

Figure 5-11: The QuickWatch dialog box.

Before committing to using any variable in the Watch window, you can right-click the
variable and select QuickWatch. From here, you can quickly evaluate the variable value, then
decide whether or not to add it to the Watch window for future use.

Call Stack Window

The Call Stack window, shown in Figure 5-12, displays the names of functions used up to the
current point of execution. You can add, disable, or remove breakpoints simply by right-
clicking on the desired procedure name and selecting a breakpoint option.

"% Dvwrillaghap Meuraiell Wiosal e, HCT [breeok] - Toom dork [Boed Ouig]

B Eor g [l Guld Dl el peees B

T LT e o | g ron -
% e e L

wom O OTELT AR He - W (] st e+ Bl |4] s =
» s Nemwilools o ke D plives - L eLagegg - m

* a1 * ity TRk -] BB i=

1 = e -
= Frassersd Guh SwACEeArlay_C11ST |YANL SEAMEF LS ORJEET, II-_R.'-* T By
| in Sparan et ¥ el
—] Exsmmirrlii o
T e —— . - - 0T

Tum =

[Y b LI - [
—
e T e e O L W PO g 243 = CTH PR © S LTSN | TR e r-]

| et eiee T e B

et

Figure 5-12: The Call Stack window.

Double-click a procedure name in the Call Stack window to view the code behind that
procedure. If you happen to double-click a procedure name for which the code is not
available, a Disassembly window is displayed. If the Disassembly window has the focus when
double-clicking a procedure name, your code is disassembled and displayed.

The Call Stack window also provides easy access to SQL Server Stored Procedures. Stored
procedures show up in the Call Stack window just like any other procedure and can be treated
as such. Breakpoints can also be added to stored procedures, which will display the stored
procedures source code for debugging purposes.

Command Window

In Chapter 3, "Visual Studio.NET Walkthrough," you learned about the various uses and
functions that are provided by the Command window. It is important to note, however, that in
the context of debugging, the Command Window has assumed the functionality of the
Immediate window from Visual Studio 6.

Breakpoints

Breakpoints determine when to pause the execution of code and are useful when debugging or
testing a code segment. This is often handy when skipping through code to a specific point
where heavy scrutiny is needed. At this point, other debugging windows can be used, such as
the Locals, Watch, Autos, or Command window.

The Breakpoints window (Figure 5-13) provides a central location for managing all
breakpoints throughout the application. Select Windows from the Debug menu and then select
Breakpoints to access the Breakpoints window.

o wevelleghop dcesel) Wivasl Basic MET[lerh] - oo 1, v [Reed Owly]
Bl Dok e ol i [Dak miwie Dee
- W@ o O R

@ T3 CE Cn wme - g] mnapiep e - el |ea] o nasan - ®
—— © Sben Lolvw -Dardegie 0 N

L * ey (R | DE i

Lo - L - = =

Eawd

Figure 5-13: The Breakpoints window.

The Breakpoint window provides a variety of configuration settings for breakpoints including
the ability to create new breakpoints. The source code behind a breakpoint can be displayed
by right-clicking the breakpoint and selecting Go To Source Code or by double-clicking the
breakpoint in the Breakpoint window.

Right-clicking any breakpoint in the Breakpoint window and selecting properties displays the
Breakpoint Condition dialog box (Figure 5-14). Here you are able to set properties that
determine when a breakpoint is executed such as Hit Count and when a value is true or has
changed.

e [wamil i gop - ke s Vimal Bk HIT [honek] - Foom] vh [Bead Galy]
Biv B e el Bl b Bk Wodes e

uram, Pl | Racessr | b ||
temsl popdir s T gy e P e b e By

Ind Bub '_
* el .
X _ s | St e bk e 4 i, o el & et s ard the

S vy B s B s e 8 e e

= Cardiun

Figure 5-14: The Breakpoint Condition dialog box lets you configure conditions for a
Breakpoint.

Package and Deployment

Packaging and deploying applications has had its own fair share of challenges over the years.
When discussing application deployment in the workplace, it is difficult to avoid terms such
as "DLL Hell," interface compatibility, and registering class GUIDs. Before the .NET
Framework, the most significant challenge in deploying applications was registering and un-
registering different versions of DLLs. COM implemented a binary standard where all
interfaces of a component must be registered in the registry of the operating system.

Whenever an interface, which is defined by its methods, properties, events, and enumerations,
changes, the binary compatibility is said to have been broken. The impact of broken
compatibility means that the old DLL is unregistered, a new interface, including a new set of
GUIDs, is registered, and all client links to the DLL become invalid. You must recompile and
deploy all clients to the changed DLL to correct the broken compatibility.

With Visual Studio.NET, keep in mind the following:

e All .NET Framework applications can be installed using a simple XCopy command.

e Visual Studio .NET provides a variety of installation options including Package and
Deployment Project and Package and Deployment Wizards employing intelligence
into your deployment package.

Visual Studio .NET Wizards

Visual Studio 6 provided a simple wizard for deploying applications called the Package and
Deployment Wizard. Visual Studio .NET provides a set of setup and deployment project
types. To create a new setup project, simply create a new project from the Setup and
Deployment Projects folder (Figure 5-15).

Hiw Praject El

Erabect Trpas: Temglahes: Iﬁ =3
=0 Visual Basic Projects f e -
=0 Visuad £F Projects 5’.] é! _1;
=] Visual S+ Progocts Sabup Project Wb Sabun Marga Madul
2 Sabup and Daployemant Frojscts Progact Froject

w [0 teber Progects

[0 Visued Shuchn Schuticres & E[

EXCEEET] Cab Proet

Craate & Windores Instalier project with the ad of 8 wizird

Jeeen | setupt
Lzt | CilPratacts j Proiniss... |
Frofect wal ks created ok C\PrakectslSetupd,

Fhong [o cocel | et |

Figure 5-15: The New Project dialog box with Package and Deployment templates.
The Cab Project

The Cab Project allows you to add files or applications for deployment. Once the Cab files are
created, users can run them by double-clicking or they can be downloaded through a browser.
For installations that are intended to be run directly by the user, it may be preferable to use the
Setup Wizard to create an msi (Windows Installer Files).

The Deployment Wizard

The Deployment Wizard walks you through the process of deploying a .NET application. For
example, you can build a deployment package for the EventLogApp, and then run the
installation. To create the package, follow these steps:

1. Create a new project by selecting Deployment Wizard from the Setup Wizard of the
New Project dialog box.

2. Name the project EventLogappSetup and press OK. A wizard appears to walk you
through creating the deployment package, as shown in Figure 5-16. Press Next.

Selup Wizard (1 of 4)

Welcome to the Setup Project
.
> -
rus wizand Al boad il Mhwciich e shaps of Creadirg
3 FUD projadt,

& sebp profect cresbes an et alier for vour
anpiestion,

T prheck thak @ erested can be used inmredately or
furthar customzed bo sdd exctrs leatures ron ooeere
Loy Whem woizand

Qb Wt b cresbe & rew sebup project, or Cancel ko
it b wizard

Figure 5-16: The initial dialog box displayed in a deployment wizard.

This screen requests information about your application (Figure 5-17). A web
application includes ASP.NET and Web Services applications. Because the Event Log
application is a rich client application, select Deploy a Rich Windows Application and
click Next.

Satup Wirard (3 of 4]

Chnose a project bype
The tupe of profect debermines where ard how fles vl be irstalied om 5
taget comput e

E[.Sl N woms sl oonreal e a sebug groge s bo astall anapplic alion?

17 Creabe a sebup lor o Wi applcation

™ Craste 4 sebup for o web sppdoacion

@ Do you want to oreate o redistributable package?
" Create & merge moduie For Windows Iretaler
™ Create a downliadstle AR i

Carnce | < Back f Bt I Erish I

Figure 5-17: Choosing a package configured for a web or Windows application.

The next wizard page allows you to include any additional files your application may
require or files that may add value to your installation, such as readme.txt files (Figure
5-18). You could go ahead and include all of your application files here but we will
not. Click Next to continue.

Setup Wizard (3 of 4)

Choose files to inchude
Yo car add fles such as Peadte Fles or HTL pages bo the sebup.

Whaieh aibild iwimwal flli=s dlin woms sl B i bomle?

Cance | cBack || pets Fnish]

Figure 5-18: Adding additional files to you deployment package.

5. The final deployment wizard dialog box displays all of the choices that you selected so
you can verify them before the project is created (Figure 5-19). Select Finish.

Setup Wizard (4 of 4)

Lreate Project |i|
The witzard will rcwe areste 5 peofect based on vour dholcss

SUmmary:

Project bpe: Create o eebop For @ windows apolication
Progect gnoups Lo inchecde: [none)
Adctiona fbes: (nona)

Progect Diroctory: C:\FrodoctsiEver Hoogs ppdE ventLogApo, woraf

n'_':ncel| -'.’ﬂnct| | :hshl

Figure 5-19: Viewing a summary of choices that you made.

6. Now it is time to add the EventLogApp application files to the setup package. Right-
click on the EventLogApp deployment package and select File from the Add menu.

7. Browse your system and find the EventLogApp application we built earlier in this
chapter. Navigate to the bin directory and select the EventLogApp.exe file, then click
Open. The application's dependencies are displayed in the Detected Dependencies
folder of the deployment package.

8. Right-click on the deployment project and select Build to create the msi installation
file.

9. To run the installation, navigate to the Debug folder of your deployment project and
double-click on the EventLogApp.msi file to load the Setup Wizard (Figure 5-20).
Select Next.

& bventloghppSetup

Welcome to the EventLogAppSetup Setup Wizard ﬂ

The relalisr wil guide sou eodgh Hhe sheps raguensd b nelall Evenfl cgfipeSetup on o
computer

WERKIMG: This compules eogram iz moleched by coppight lew srd riemationsl rsates
Unasutmomeed duplicstion or dismbubion of this program, or ary parbon of &, map ek in seves ol
o1 cirnal penahes, and will be prosscuted o e raowm edenll possble ardes he L,

o= o ()

Figure 5-20: The Event Log sample installation program.

10. Now you can select the application folder to which you want to install your
application (Figure 5-21). You can also choose to install this application for all users
of the system or only yourself. Press Next to continue.

& Fwentl oghppSetup

Select Installahon Folder

The watalzs vall matall = venll cglppSetup bo the Followarg Bolder.

T wit2all i thas Polder, chck "Masd" Tainddsl 8o & cffsiant iokdei, srbel | Beiow o chek "Browdsa "

Foides
[E'\Pu:-]m Fies\Defaul Company Name'Evert_oglppSenp's Upowers]

Enk Cost, |

Inestll Evenil ogiipps etup for poursel, o for srmore who uses ths compuber

(@ Everpenel
A dussk oo

[Carcel I [< Back] | Hend & I

Figure 5-21: Selecting the directory for the Event Log application.

11. The next screen lets you know the installation is ready to begin. Click Next to begin
the installation. A progress bar should appear briefly, followed by a status screen that
indicates a successful installation (Figure 5.22).

I.; EventlophppSatop

Installation Complate &
ES

Evemil nglippS ehup has been sucessluly mstaled

Uk, “Ulone™ bo et

Ol

Figure 5-22: Selecting the directory for the Event Log application.
The Merge Module Project
The Merge Module Project packages files and other resources that will be used by multiple

applications. The file generated by this installation package is an .msi file that is subsequently
added to other projects that rely on these shared resources.

Summary
Development tools go a long way to decreasing the time and effort required to deliver a
working application. Visual Studio .NET introduces a few new tools and improves upon older

ones. Not all the tools available for applications come with Visual Studio .NET. However,
they are available for monitoring the performance of your application.

Chapter 6: Designers, Database and
Monitoring Tools

In Chapter 5, "Visual Studio .NET Tools," you learned about various Visual Studio .NET
tools that aid in the development, debugging, and deployment of .NET applications. This
chapter covers a variety of designers for windows forms, web forms, .NET components,
XML, and user controls. You'll examine Visual Database Tools and related database object
designers while examining the potential impact of poor database object implementation.
Finally, you'll learn about the tools that are available only with Visual Studio .NET Enterprise
Edition, including tools for performance monitoring (Visual Studio Analyzer), reporting
(Crystal Reports), and Application Boundary enforcement (Enterprise Templates).

The Windows Form Designer

The Windows Forms Designer is used for building rich windows based applications. Classic
Windows applications are based on the Win32 API, the Visual Basic 6.0 windows designer

that included most Win32 functionality, effectively shielding the developer from the details of
implementation.

Visual Studio .NET's Windows Forms Designer differs from classic Windows development in
two significant areas. First, Windows applications that are based on the .NET Class
Framework, not on the Win32 API, as evident when viewing the implementation details. The
second difference lies in the implementation details, all of which are exposed to the
developer. Not surprisingly, this can confuse classic Windows developers who are
accustomed to Visual Basic 6.0's hidden implementation.

Figures 6-1 and 6-2, respectively, show the difference between the classic (Figure 6-1) and
the .NET (Figure 6-2) way of implementing applications. All code was generated by the
Visual Basic 6 and Visual Studio .NET IDE. You'll notice the implementation code that
appears in the .NET window in Figure 6-2.

o punedl Vsl Boardn || e i) - [Prmesss |

e =
B Ms [e Bopn Fomst [sbog B Cussy Dags Tows Sidbe dndes (o 18] =]

ITante]|

B-u-M@E:EM S oo NPSERAR T e 7 s m
HEwe|
| L Bl =T C—
[N A o Al Preie
ATE kY
iz
L=
(B B |
o= Al i}
= |
§ -~ =
s =
-
. JJmi_ﬂ
Figure 6-1: The Visual Basic 6 code window for a new form.
2 Tl ppleatim - Wierme® This| sk ST T [deiign] - Tarm! b CIEE
Bo Ed gon Puid Bl fehe Buk e Ha
EHe-sae s me o i omea - | gl e 11 8-
Bl T o AN,
| B | Sektior Fogkn. . B X
§ [Fyta =] [sl A EmE 2
B : TER St o g
i '_FLTA---':--’.Hu :—l.-.--i matciwe . P pma, Fo e = 5 et gl
§ El:::-:
Misguos = Fisdows Fors benigeac guuscated cote * e
1= Fibilin Bub Hew
Syiusa.taw -
«)
Focn: Jus o e Mo |
Trgiren "
L Br Imieimli sedompanans) oal I =]
End Pk LAl *l
A T s 41 | B 4on i _-J—-I
ik [
L @

Figure 6-2: The Visual Basic .NET code window for a new form. Notice the implementation
code.

Web Form Designer

Web forms are HTML-based user interfaces that allow developers to implement code behind
a form; they are dynamically created by IIS when requested by a web browser. Before IIS

gives the requested page to the browser, the page's programming logic and processing are
performed, and the result is formatted and returned as pure HTML. Consequently, Web Forms
are compatible with all HTML-based browsers including most browsers today.

The Web Form Designer allows web page development to replace much of what Visual
Interdev (in previous versions of Visual Studio) handled. Visual Interdev provided the ability
to build ASP and HTML web pages as well as client and server side scripting, but failed to
separate the presentation layer from programming logic. The end result was complex
spaghetti-like code with all the makings of bug-prone and hard-to-modify applications.

Unfortunately, ASP required this type of implementation. ASP.NET, on the other hand, when
it interprets compiled code, transforms ASP from a late-binding interpreted language to a
strongly-typed compiled language with the ability to take full advantage of the same
development environment as Visual Basic, Visual C++, or C#. This effectively eliminates the
need for a separate development environment and makes the Web Form Designer possible
(Figure 6-3). Chapter 8, "Building Forms," covers the Web Form Designer in more detail.

Figure 6-3: The Web Form Designer.
The Component Designer

The Component Designer makes it easier to develop components than in previous versions of
Visual Studio. Many common tasks such as programming events log tasks, message queuing,
and reporting components can be dragged onto the Component Designer. The code that is
necessary to instantiate the components is added automatically and all programming tasks can
be completed and tested using the code viewer.

When creating a component in Visual Studio .NET, you will notice that certain
implementations are generated automatically. This is partly due to the fact that NET
components require a container.

Components are classes that implement the System.ComponentModel. IComponent class
interface. When creating a new component, the System.ComponentModel.Component class is
inherited, and it, in turn, implements the System.ComponentModel.IComponent interface for
use by the component. This interface allows the component to be wrapped a within a
container, thus providing services such as memory cleanup with access to the Dispose
method. All resources allocated to a container are released when the container is torn down.

To access the Component Designer, right-click on a component or class and select View
Designer. The Component Designer initially shows a blank screen and a single instruction
stating how to proceed. To design your component, drag controls from the Server Explorer
and Toolbox to the designer interface-a visual way to build non-visual components. The
designer shows a visual representation of non-visual components as shown in Figure 6-4.

Be O Yoo fropr Bid el Dt Jmh Nndee [Hep
B-o- W@ s SR - [- 1) o L - RPR =
Corrgomand | v [fmwion]™ | Ceroetl b7 i kX _
=
Wm0 Do pmn jr Errea——
T i el
i %
'3_.1. ﬂ M
v "
i =
ER]E
- |
i g
[
L] £ tnto o [@ o
o
PELT

Figure 6-4: The Component Designer.

The XML Designer

The XML Designer helps to implement XML by providing three views.

Schema View

The Schema view (Figure 6-5) is a design interface for creating and editing XML Schemas,
which can be as simple as dragging and dropping a table from the Server Explorer onto the
designer. Aside from allowing you to add several types of XML properties, the XML Schema

designer can be used to generate ADO.NET DataSets (as discussed in Chapter 9, "Retrieving
Data").

C= L po= Popct [Dehg Sgwes ok jordes ek
E-f-orE D " E 1| o e - | e -1
A .
45 Detmet L™ = deresigin . ¥ X
= — Dolw
i i i o Pt e B
1 el _ SR S
B [l ahwwaca
P ekt 2
Xtk et)
[—
3 ¥
[+ + o= rdar ¥ == l.== B [
i 4 - [Catamn S sl - —— R
i Dot R R “
i Crolyenll i Corbardi whing -
r Coirbulr deurllin P Cokadfin sl *'EI
i PesivE A dinies < W i i | ==
wfial i =
s ikl
e et o e el
i mkt oy
b
D st | 1A e @
Baaty % Hi sl

Figure 6-5: Modifying an XML Schema with drag and drop using the Schema view.

Data View
When an XML data file is added to a project, the Data view (Figure 6-6) can be used to view

tables and their relationships to each other. You can modify tables, data, and create new
schemas. The Data view can only be displayed if the XML contains actual data.

#2 Wirdawsh ¢ oo atoglinl - Micreall Pl B 18 |desige] - Ge

Lk S fes Peed BQud [ehg M (wbh gedes b

;]1":.'.";3“' o i S § Duug w g v = af-ﬂ'
.
Sevwfehre 8 K| Contsmsd | 1h % | saseitag . § M
Dolsa Eals Pabies -
o ?

iy s s b
e Celabere Slogam . el

- R GRS wieaaloe
z Pl edbas el e —
i B s == e
= B vmpicyma
= B p=

z @ ebrly
w0 plisben
v @ et

B e

= O
Bl s

=]

e

L ——— 3
TR bl i]
-

2 [e
iy vt

B et breyeaar

[T I e @

Figure 6-6: The Data View Designer.
Source View

The XML Source view is similar to the Windows and Web Designers when it comes to XML
development because it provides Intellisense and statement completion.

To add XML files to a project, right-click the desired project, select Add Item, and choose the
XML Schema file. The XML Schema view lets you begin modifying the XML Schema, as
shown in Figure 6-7.

3 Toleckmrstpplcatin - Mierme Vhiel Reie HFT [dreim] Datesrt] od®
Be LN pom Peisd Bl Deba Swes Lile 3o Weke Hes
Fro-=Wld 15 " § Inbeg = el AR
FReE%ee EE 4% h A,
| F T T CRRE Py S
B LW BLeman: '.u-r-'\.ul:u-l-;rwrc' ENEATCENINTC NG MINCTTETE LS 5 :i : 3 =
K] oLl i o LT ——
i R et i il
r al Uepreanc
T) heriily
[} L poswak] o
Pomish

Garridid g s

el

o e o O el st i
al i . s BB e | S e e

= pmater | 0w L E
Seviv Wi L & 1 Ll

Figure 6-7: An XML Schema generated by Visual Studio .NET after dragging the employee
table of the Pubs database onto the Schema view.

The User Control Designer

Visual Studio .NET provides a host of controls, allowing a drag-and-drop style development
environment for building feature rich applications. While these controls provide a base
functionality that, in many cases, meets development requirements, a custom solution is
sometimes required.

The User Control Designer (Figure 6-8) provides a visual interface for creating custom
controls called user controls. User controls are controls based on the functionality of more
than one control; when they are compiled into a DLL, they are called composite controls.

» mbc ST [dewbge] Uhewlomiroll vl [Daign|®
B B tww Bt Bl Ot Gk Bk ke Sk
FrE-sdd e P Y B R - AR
- w
PR el eyt b P | - TR
e - B HEEs e
e T i Wviom woeri e b
oo P atall L Wt eal bl i ey |
[Frest= f..;-..:..nl |
AT g st
S

A irdiatel L By

[s

B tenn

P ki - e B » .,’_"
(o PR Y e ol g i
] s = L]
=t L N N]
=] Werlamirall ol Mo B =
B e A1]

4 Lz Bt Aty ok =[]
3 ed e Bl ey

S = T L LT

R W DR AT et M

e

LT [~ B
] :

Figure 6-8: The User Control Designer.

To begin building user controls, simply open or create a new Windows Control Library or
Web Control Library project. Begin by dragging the desired controls onto the designer then
by building your logic.

Visual Database Tools

Visual Studio .NET arrives with a set of visual tools for creating and modifying database
objects and schemas, such as diagrams, indexes, triggers, and stored procedures. These
database tools offer a single interface to multiple database server backbends. At the time of
this writing, only SQL Server and Oracle databases are supported; however, support for
additional databases is expected in the near future.

Tracking changes and coordinating versions of database objects within an application can
become quickly overwhelming. Before Visual Studio .NET, database objects, which were
created within SQL Server's SQL Enterprise Manager, could be added to a source control
application only after generating scripts for all the objects and then saving them to a file. This
made script generation time consuming. Fortunately, Visual Studio .NET's IDE lets you
create database objects and queries then check them into source control. (You learn about

source control in Chapter 9.)

Database Projects

When creating a new application, it is often necessary to create a new database. By creating a
database project, you can build a new database while tracking stored procedure changes for
version control of database objects. Versioning of database objects is possible because all
Visual Studio .NET projects, including database projects, can be added to Source Control.

You can create a database project in Solution Explorer to organize your database references,
scripts, and queries. This allows you to work with an application's database aspects without
having to recreate database references or cluttering up other projects in a solution with data
related objects because while your presentation resides in one project, the database exists in
another. This separation helps the application to be more modularized and easier to manage.

To create a new database project, follow these steps:

1. From the File menu, choose New * Project.
2. Expand Other Projects and Database Projects and then select Database Projects. You
can create a new database connection or select an existing one as shown in Figure 6-9.

B Data Link Properties EJ
Provides Connection |.":'|.l:|"r'ﬂ'l:Ed|."-".1|]

Specify the following Lo cornect to SOL Server data:
1. Select or erter & sErier name:
. j Bedfesh |
2. Enter infoemation ta log on to the server:
© UsgeWindows NT Integreted secuily
% e s speciic user name snd password

|z nams: l

Password |
[T Dlark password [Allow saving passveoid
2 % Select Ihe databaze on the server

| =

" Altach & datahass hle as & datahace name

|
| =

Tesl Conneclion |

ITI Cancal ‘ Help |

Figure 6-9: The Add Database Reference dialog box.

The end result is a database project (as shown in Figure 6-10) with everything you need in
order to begin adding and manipulating database schemas and objects.

™
Fin D W Boed S (ebuo Destes Bock Wndes e
G- owed W F-R| o o B o L
|- e — T E
R DO %E &
" g e ~ 158 Souen erdnaainr e s {1 e
i W ok g e e
5 i W Db D]
:: o Casia g
3 ¥] adhes 23 e
1 B daaani el B
= o ok ale
W B s
L=
o O s
o 0 movsdend
. ﬁl‘:‘. fr Eey—
¥ B sttt Ao L]
W] wes
} h:I"' [otts moai vt B |
B Bt Pari AT
L — =
o [mpn
B et
=] =
Ty P h !
CR P R
- b
A Pl v EF e [ot =
Eoa,

F-igure 6-10: A database project.

Database Designer

The Database Designer is a visual database schema editor for Microsoft SQL Server and
Oracle databases, which enables developers to add, modify, and delete database objects.
These objects include tables, views, indexes, and stored procedures.

Creating a database table is as simple as right-clicking on the Tables icon of the database
connection in Server Explorer and selecting New Table. A designer (shown in Figure 6-11) is
provided for entering the new table's attributes. Follow the same process to create or modify
views, indexes, and stored procedures.

Fy b, ke O Newwr 000 Dl [deviga] o i, Latsbed | Labibe Qi paddes]”
¥ L i;

Be A ou Beat M [ely Cgbes Olgras Tess nks i
E-i-cfle ind - BB 4 v -1
Sy =D,
F ol dl.r.-q.hl.q.umrl B Sl Bivnf gl - dsiia] L
i ki Bt Tum Wiy nlll-‘l.l L=
T s [E] v
] g e ris ” - R T T T s a]
i e e = -2 P P
i EETTE
g = Cieite Rii
L o i
T L o
ol ek it s
Criares
D 3 it e | e
Il e
’ RECE i x
[E
E[E)E o
'
Ly
Cillilim ot e ol i
B ot [- romn

Fig
Query Designer

The Query Designer allows developers to build queries visually. Using a visual view of tables
and columns, developers can decide what data will be returned and how that data will relate to
other tables.

Selecting tables and columns in the Query Designer is a quick and dirty way to select data for
retrieval, but most applications require queries that do more than just return data. Often the
data returned must be sorted by a specific column or other criteria that limit the returned data.
Because the visual configuration and design of queries can never meet all application
requirements for data retrieval, the Query Designer allows for complete control over the
development of queries through direct editing of queries.

No query is complete until it has been tested to verify that it meets your application's
requirements and that it is bug free. To test your query, once you are finished building it,
simply execute it in the Query Designer and examine the results for errors.

To create a query with the Query Designer, follow these steps:

1. Select Add Query ... from the Project menu. The Database Query item is
automatically selected. Give your query file the desired name and press Open.

2. You are presented with the Add Table dialog box that is shown in Figure 6-12,
allowing you to select the tables involved in your query. Select authors then press Add
then Close.

Add Tahle X
Tables |1.'.aws | Functions |

discounts
employes
pobs
pub_infin
publishers
roysched
sales
shores
titl@author
titles

| Add I Close Halp

Figure 6-12: The Add Table dialog box.

3. Select fields by checking boxes next to the columns as shown in Figure 6-13. The
columns you select will be listed so that you can select sort options and filtering
criteria. Also, you can see the SQL query syntax automatically generated each time
you select or configure an option.

skl Froject | dsige| - Wjris Quaryl . cig ; Devige [bos,

T LR s PN e QN [Ras P

W-E-sEdd il .0 & o] AR T
SN o= 8% HL® BE|S.

[T T QT e | 11 W | [e Posal 8 N
A0 an sl =

¢ -

Bowwe [10r 3 W e
B o |

L

Figure 6-13: The Query Designer, including selected fields and a selected sort order.

4. Select a sort option. If you select more than one sort option, you can modify the sort
order to determine the order in which columns are sorted. Notice that the au Iname
field is selected for Ascending sort order in Figure 6-13.

To run the new query, right-click anywhere in the Query Designer and select Run (Figure 6-
14).

g Gl) o i
- e - L] AT

1 AL

By Ad b

[e Jradk Eaipas [4el Trya [
= [= B v
- .

T S T e e e e Sy £ et =y e T

T =
W TN wFeed W Wi i il S800 = Ei]u
SFhen Ot Fire B2 = (e ote

+ o
‘! I I I I L&
o i)

ety

-

Figure 6-14: The Query Designer as the query is executed.

Once a tested query has been idle for some time, Visual Studio .NET will attempt to save
SQL Server resources by releasing what it considers to be an unnecessary connection or lock
on data resources. You'll see the dialog box shown in Figure 6-15.

__,-11 S b o, Yo F - hm‘rrv—lhlnn-klm The

mmwnhmmﬂhmwmw“hﬂmn len

gy, Wh conume wlsdtle B reROITH, (MCREY m}mmm-:ﬁ mhp-u.lnlh
claared in ona vk, Thin sl apby Hoe sraadb clarerd wramwed charges, and

wemmrsve o Hha datshoss. seaer, ﬂmlmmmmﬂhm‘ﬂ.mmwhmwm

s ol v b ek e mewk e e i e e e el sbacs o

i R I |

Figure 6-15: The warning that server resources will be released.

Script Editor

The Script Editor allows you to edit any script including SQL Server stored procedures and
triggers and Oracle PL/SQL. Color-coding is available; however, no Intellisense is provided.
(Look for this feature in future releases of Visual Studio.)

The Script Editor breaks SQL code into logical blocks of execution. These blocks are not
always executed linearly because in T-SQL (Transact-SQL, the language of SQL Server
stored procedures), conditional criteria can be specified before it is evaluated. When you
debug a stored procedure, you will notice that breakpoints are not enforced at the line level.
This is the same reason why SQL code is broken into logical blocks; each block of code is
allowed a single breakpoint.

Stored Procedures

Stored procedures are precompiled database objects that contain code for implementing
business rules, data retrieval, and data modification.

With that said, there is a distinct difference between precompiled stored procedures and
compiled components. Components, such as .NET components and windows forms, are
compiled into byte code, which is a lower-level machine language. Stored procedures are not
compiled in the same way, although the path that is required to execute the stored procedure
(the query plan) is compiled and stored in memory.

With regard to business rules, there is no speed or language advantage to building business
rules into a stored procedure. Business rules in the database should be built into database
constraints or triggers, effectively preventing an application from bypassing the rule.

Visual Studio .NET provides for the creation, modification, and deletion of stored procedures

through the Server Explorer toolbox. Once a stored procedure is created, it must be tested and
debugged if necessary, which is historically a difficult and time-consuming proposition. SQL

Server did not provide a means of stepping through stored procedures until the release of SQL
Server 2000.

Unfortunately, developers must use a separate tools set, SQL Query Analyzer, to step through
a stored procedure. Visual Studio .NET allows developers to continue using a single tool set
for developing all aspects of an application including stepping through and debugging stored
procedures.

Right-clicking on a stored procedure in the Server Explorer exposes a set of functions that can
be performed against the stored procedure including running and debugging. When running a
stored procedure the Visual Studio .NET IDE will prompt for the parameter values the stored
procedure is expecting, as shown in Figure 6-16.

Run stored procedura E
The stored procedurs <dbo.“byropalty™> requines the Follseing paramseters:

Type | Birection | Name | ¥alue
ik In IEEreniage m__*l

[k | coxel | wep |

Figure 6-16: The Run stored procedure dialog box.

To save time, the IDE saves values that you've entered for the stored procedure parameters for
use as default values the next time you run the stored procedure. The execution results are
displayed in the output window.

Debugging a stored procedure is the same as running a stored procedure except that while
debugging occurs, breakpoints can be added to blocks of code in the stored procedure as
shown in Figure 6-17. While stepping through a stored procedure, you can change the values
of local variables, allowing you to test a wider range of possible situations.

e b - O e 000 Dl i [Se0a] - @, et) Tiered Fracasere Tiob k)
B EEF e Boed Bud e Dgtbasm [k dnde e
B-hesdd iwn -y oeoag * | i Wi b 1-4 -
% EE EEL
5B ety -y [Pk s i b x| ok e - S| "x
= =
; ALTEE FRSLICHD cassd Bisibais sesan, Baibiis scesy 7 e e ;
: TiS—— e
[e u
. Tact puam_i8, Lyps, Latie_LA, pOice [
1 oo UL Lew 2 L s
hace @ alimi L zice <Mhilimdt K trpe = Boype H Jry) A
reT BT PiB N, LY ek e
COMPITE cowmet (RaENe_1d7 BT peb_id Evpef o i b i
ey or [0 Cer van
A s [N}
I e =
<] Bl
=
- i n
[t aburis e =
F i .' B s [i |

it s al i s

Figure 6-17: Displays a stored procedure in debug mode.
Database Objects

Let's look at a few objects that are most often abused or forgotten because the proper use of
database objects can make or break an application. Two of the more significant problems
application developers tend to have is a poor understanding of indexes and the
implementation of business rules (constraints) in a database. This is partially Microsoft's fault
because developers are able to get by during development with visual tools to aid in the
implementation of database objects without a clear understanding of certain design issues.
The result is a database that seems to perform with relatively few records, but which causes
panic when the application fails to perform or scale in production.

Index Objects

Indexes are the single most important and overlooked database object when it comes to
performance. Indexes organize data in tables so that the database query engine does not need
to scan the entire table searching for your application's data. Table scans should be avoided at
all costs because they cause a serious performance hit that may not manifest itself until
several thousand records are added to the table. That cost is associated with the support of
indexes. Indexes should be used on columns in which query criteria are determined, such as
columns that are referenced in the WHERE clause or columns that are referenced in an
ORDER By or sort option.

Indexes are set up as a subset of data from the column it is created in an index table and a set
of pointers to the physical table itself. The index tables are updated when data is inserted,
updated, or deleted. This can actually have a negative performance impact if indexes are
unnecessarily created. The overuse of indexes can become as much a burden to the
application as not having indexes.

The type of index that is used can also impact performance. Clustered indexes physically
reorder a table on the column they are created on, and searches on columns that are physically
ordered yield the fastest results. Because the table's data is physically reordered, only a single
clustered index can be defined per table, and only the most searched column should have the
clustered index. In most cases, this is the primary key. A primary key index enforces
uniqueness on the column it is defined on.

Note It is a little misleading to say that you are adding a primary key index. A truer statement
would be that you are defining a primary key constraint, which in turn implements a
unique index. A unique index enforces uniqueness within the column for which it is
defined.

You only touched the tip of the iceberg here. Your next step will be to find out what the pad
index and fill factor are-two index properties that are often overlooked and likely
misunderstood. Similar to tables scans, improperly configured pad index and fill factor
settings can prove a significant performance hit through page splitting. For more information,
see MSDN online.

Constraints: The Implementation of Business Rules

As you learned in Chapter 2, "Evolution of Tier Development," all data-specific rules that can
be easily enforced in the database should be. Constraints are a way to implement simple
business rules at the database level; you cannot bypass a business rule that is implemented as
a constraint.

Table triggers are like constraints except that triggers allow you to implement more complex
business rules than constraints. However, constraints offer a performance gain over triggers
because in order for a trigger to fire, data must have already been inserted or modified.
Constraints, on the other hand, implement business rules before data modification can occur,
which increases overall database performance.

Types of Constraints

Database constraints are database objects that aid in the enforcement of business rules. More
specifically, they enforce data specific business rules.

Check constraints define the type and format expected by the column receiving data. Default
constraints are useful for defining the value to be saved if a value is not supplied. (This can be
very handy when using the Newld() function of SQL Server to create GUIDs in a column for
a record that may be used for replication to diverse systems.)

Unique constraints enforce column uniqueness on columns that are defined with a unique
constraint and by primary key columns. Foreign key constraints enforce referential integrity
between the column defined with the foreign key and the primary key it is related to. Primary
keys will usually be defined on a different table; however, a recursive relationship can exist
between two columns in the same table. That means the same column can be both a primary
key and foreign key. This type of relationship can be useful when defining hierarchical data
such as a company organizational chart.

Visual Studio Analyzer

The Visual Studio Analyzer (VSA) tool allows developers to dig into their application to
evaluate component interactions and detect performance bottlenecks. Detection of potential
bottlenecks is essential for creating scalable distributed applications. Applications are
expected to use resources when running, of course, but we must avoid having an application
or a component of a distributed application abuse resources or take longer than necessary to
perform a task.

Bottlenecks

For purposes of our discussion, a "bottleneck" is the area of an application that runs so slowly
that it holds up other processes. In a monolithic application, a bottleneck was considered the
process in a set of processes that took the longest to run. In today's distributed application
architectures, a bottleneck is more complex. Not only is a bottleneck a slow-running process,
in a distributed environment it can be a network resource. To build a scalable distributed
application you must monitor processor usage, network usage, system resources, and
input/output (I/0).

VSA allows us to monitor an application with a client-server approach through its client and
server components (shown in Figure 6-18) in which each component of VSA resides on a
single machine. This may often be the scenario the developer employees while in
development; however, often application components are distributed among multiple
machines. The scenario, as shown in Figure 6-18, is one in which the VSA Server collects
information from IIS, COM+ services, and the data source.

VEA Client/NVSA Server

IS

COM+

Database

Figure 6-18: A single server application and VSA Client Server components.

VSA's client and server components are not the same as your application's client or server;
they are VSA components used to collect and analyze information from VSA server
components. The VSA Server resides on any machine where distributed application
components exist (including presentation, business, or data access layers).

In a single server environment in which the user services, business services, and data services
tiers exist on the same server machine, the VSA client and server components are installed on
the same computer. This is often typical in a development environment.

In a production environment it is best, for scalability sake, to separate each tier and distribute
the tiers among multiple servers when appropriate. Often your average application will not
require this level of distribution of processes. When a distributed architecture is required, a
VSA Server component can be installed on each of the tier servers and the VSA Client on a
development workstation where the distributed application can be monitored as shown Figure
6-19. In this scenario the application is distributed requiring careful thought to where each
VSA component is distributed. The VSA Servers that collect performance data are placed on
the IIS, COM+, and Database machines; these are the locations of the components that we
wish to monitor. The VSA Client, used to view the performance data, is placed on the
workstation.

VoA Jarr
Conmo r i

=]

WA, Server [A (hert Cornpoferrts
Camzzrares Bttt o
WS Sarer
Cormgo e s DChtn b 5

Figure 6-19: VSA components spread among a distributed application.

As you can see in this diagram, only VSA Server components are required on machines with
our distributed application components. In this case, the IIS server, COM+ server, and
database servers have VSA Server installed while the workstation that is used for collecting
and analyzing performance information requires only the VSA Client components.

Visual Studio Analyzer Architecture

The VSA Server consists of three server components that must be installed on all machines in
which collection occurs. A logical view is shown in Figure 6-20.

o Event Sources: Components registered to VSA that generate events.

o In-process event creator (IEC): Called by the event source. The IEC provides a
method for generating VSA events.

e Local Event Concentrator (LEC): Collects all events of the server machine. One LEC
component must exist on each computer generating events.

Ao Serverl

LEC

Event Source

iEC [Vekion
Event Source _
Apn Sorver2 -l—

IEC |1

Evert Source

IEC
Event Source

i

Figure 6-20: The complete Visual Studio Analyzer architecture.

The Visual Studio Analyzer Client consists of two components as shown in Figure 6-20.

e Primary Event Collector (PEC): Also referred to as Public in Event Generation in
some MSDN documentation. The PEC collects all events generated by all VSA
Servers through each VSA Server's LEC.

e User Interface (UI): Provides a number of interfaces for viewing performance data and
storing events in a log for future analysis.

Crystal Reports

Visual Studio .NET Enterprise Edition includes the Crystal Reports object model and designer
for creating professional quality reports. The report object model provides programmatic
access to reports built in the Crystal Reports Designer, making the implementation of reports
easier than ever. It has never been easier to connect to a variety of data sources that include
directly accessing databases taking advantage of recordsets and datasets. The Crystal Reports
Designer will be familiar to users of previous versions of Crystal Reports.

Once a Crystal Report file is created with the designer, the report is complete, although
displaying the report file in an application is another issue. Report files must be contained in a
report container called the Crystal Reports Viewer, which is a container for report files that
are available both to Web Forms and Windows Forms. During runtime, a single Crystal
Reports Viewer can satisfy the use of several reports. Programmatic access to this viewer
enables the user to select from a list of available reports to be displayed in the viewer.

In the spirit of delivering software as a service, the version of Crystal Reports that is available
with Visual Studio .NET can be displayed as a Web Service. (The client requesting the report
must support XML because it is how the Web Service report is transmitted.)

As with most reporting applications, a Crystal Report in Visual Studio .NET can be
previewed and then printed. It can also be exported to a variety of formats, including HTML,
PDF, XLS, DOC, and RTF formats, as well as a Crystal Report format (RPT).

Reporting can be a critical component of an application's functionality; in fact, some
applications, such as analytical applications, can be useless without them. Visual Studio .NET
and Crystal Reports have made great strides to ease the pains of report development and
delivery.

Enterprise Templates

Enterprise application development provides a set of logistical challenges. Not the least of
these is the result of a large number of developers from a diverse set of backgrounds with
different ideas as to how an enterprise application should be delivered.

Large application development efforts often employ application architects to provide
guidance. Once a framework and approach are defined, that information is disseminated to
developers through various documents and workshops.

Enterprise Templates that are included with Visual Studio .NET provide a means for defining
and enforcing Application Layer Boundaries, which describe the scope of each layer of an

applications model. For example, a Microsoft Windows DNA style model describes five
layers of distinct functionality.

As mentioned earlier it is not always necessary to physically divide these layers, although it
can certainly help to logically divide applications. The presentation layer displays information
to the end user and provides a means for data entry. Just below this layer is the facades layer
that shields the presentation layer and developer from the complexity of the application
implemented in the Business Level Layer (BLL). The Business Level Layer provides all of
the application's functionality including most business rules, validation, and control of
application-specific functionality such as credit card transactions. The Data Access Layer
(DAL) provides all data access to application data while the database in the data services tier
provides data storage and implements simple data specific business rules.

Application architects provide guidance to developers through naming conventions, standards,
and guidelines, and until now, these guidance measures were nearly impossible to enforce
without a code review for all developers. For application architects, Enterprise Templates will
become the tool of choice for physical enforcement of Application Boundaries.

Enterprise Templates allow architects to actually define a set of templates that warn
developers from certain actions such as trying to add a Windows Form to a component in the
business services tier or an attempt to access data directly from the presentation layer. There
are too many possibilities to discuss in this overview of Enterprise Templates so this chapter
will conclude with a description of where Enterprise Templates fit into the Microsoft
Windows DNA style model.

Visual Studio .NET comes with a set of predefined Enterprise Templates. Figure 6-21 shows
the Enterprise Template projects that are available, and Figure 6-22 provides a chart of the
Windows DNA style model and the Enterprise Templates that it supports. The chart in Figure
6-22 represents a separation of application functionality. Figure 6-21 shows Enterprise
Template projects that aid in the development of whatever model is decided.

Qm-20 ¥ [| b Deing 5 -1 N

L}

Ire s T DR aghci rrwc Ao Lk B '!Il:"t:.'\-'--p\.-. Sy = B . |

Fromd ol be csar e ©1 it T D by i[85 6 e D e AEE

R

T eam | N

Figure 6-21: The Visual Basic .NET Enterprise Templates supporting DNA or whatever
architecture that is chosen.

o
eH & ﬂ & Preaentst on Layer
g E Displrys dala end provides

w ASP.NET Web webUl for umar input

Service
@ Facade (Fac)
Shislds the Pressniniion Lases from
Business e complaxity of DpEclon logc,

@ Fac
E w
F4 § & Buginess Lavel Layer (B
§ il Perfcrms pll Busingss and applcation

@ Liogic

Business Rules "
Datn Aooess Loyer [Dad)
Provcios all Cala aC0oess b o
Busirsenn Lol | acgne
Dsks Acces

&8 A Siorage Services
:! E — Pronidas daka s5rage iesvices o
g E acgication dasa

Lal

] o o

Figure 6-22: A chart of the Windows DNA style model showing where Enterprise Templates
fit in.

Summary

As you have learned in this chapter, nearly every aspect of .NET development offers some
type of designer or wizard to aid in the rapid development of .NET applications. However,
with regards to database objects, even with the designers and wizards that are available the
improper implementation of technology, specifically in the case of database objects such as
indexes, can lead to poor application performance. The tools that are provided by Visual
Studio .NET can aid in rapid application development, but are not a replacement for good
programming practices.

Chapter 7: A Visual Basic .NET Crash
Course

Overview

Visual Basic (VB), for all intensive purposes, has arrived, and it's just as powerful and
flexible as any other .NET language, although this may well be due more to the strength of the
NET Framework than to Visual Basic as a programming language.

All versions of VB prior to Visual Basic .NET (let's refer to these versions as "classic" VB)
were criticized as being non-object oriented programming languages not worthy of enterprise
level or mission critical applications. However, while earlier versions lacked true full
inheritance, they have been widely used to deliver mission critical applications successfully.

The fact is, a well-written Visual C++ application will nearly always out perform a Visual
Basic application. But Visual Basic, while lacking in some flexibility and power, is easier to
implement than Visual C++. Furthermore, because VB lacks flexibility and power, developers
are less likely to create multithread problems or memory leaks at the cost of performance and
stability.

This chapter provides an overview of many new Visual Basic .NET features and concepts.
(For a detailed language reference, see the MSDN library online or The Book of VB .NET,
.NET Insight for VB Developers.)

What's New in Visual Basic .NET?

The number of language enhancements in Visual Basic. NET nearly justifies the creation of a
new language. Let's look at a few of the more visible changes.

Option Explicit

Forcing the explicit declaration of all variables reduces potential bugs. Classic VB required an
Option Explicit statement in the declaration section of code if we wanted the Visual Basic
compiler to enforce variable declaration which held the potential for problems because
variables were often misspelled. When using Option Explicit, an entirely new variable is
created if not already declared. Unlike classic VB, Visual Basic .NET implements Option
Explicit by default, preventing the accidental creation of new variables and protecting the use
of declared ones.

Option Strict

Option Strict is similar to Option Explicit in that it tells the compiler to require a variable
declaration and requires all data conversions to be explicit. In classic Visual Basic, implicit
conversions are not possible when Option Strict is on. (This setting is off by default.)

Option Compare

Option Compare, as you might guess, determines how strings will be evaluated. The two
possible parameter values are binary and text. Binary compares the literal binary values of the
two values being compared. A binary compare would mean the upper- and lower-case values
cannot be equal, in effect enforcing case-sensitive compares. Text allows the evaluation of
two variables to be case-insensitive.

Your application requirements will determine which Option Compare option you will use.
Option Base
Option Base is a retired option of classic Visual Basic that allowed developers to determine

whether or not arrays will be 0 or 1 based. Visual Basic .NET no longer recognizes this option
and sets all arrays to base 0.

Variables

Variables in .NET come in two flavors: value types and reference types. All primitive data
types with the exception of the string data type are value type variables. All classes including
the string data type are reference types.

The most significant difference between the types is in how they are stored in memory. Value
types are stored in a stack (which requires a smaller memory footprint), while reference types
are stored in a heap.

Boxing

Boxing occurs when a value type is converted to a reference type and recreated on the heap.
Boxing should be used sparingly as the ability to move values from the stack to the heap is
performance intensive.

The most common occurrence of boxing is when a value type variable is passed to a
procedure that accepts the System.Object data type. System.Object is the equivalent of the
classic Visual Basic variant data type.

ReDim

The ReDim statement, available in classic Visual Basic, is still available in Visual Basic
NET. Classic Visual Basic not only allowed developers to rediminish an array, but also
initialize the array. Visual Basic .NET allows the use of ReDim to rediminish an array but not
to initialize an array.

StringBuilder

The StringBuilder class is an impressive class optimizing string manipulation. You'll better
understand its advantages once you understand how string manipulation has historically
worked.

Classic Visual Basic hid the actual implementation code supporting functions available in the
Visual Basic library, and string manipulation was no exception.

One common string function is the concatenation of two strings. Unfortunately, Visual Basic
doesn't simply add the two strings together; instead, the windows system determines the space
required for the new string, allocates memory, and places the new concatenated value into the
newly allocated memory.

The StringBuilder class is implemented as an array of characters. This allows it to implement
methods to manipulate what appears to be a string without the overhead incurred by an actual
string. The Insert method of the StringBuilder class is used to add to the character array in a
way that is much more efficient than classic string manipulation, increasing performance of
many common programming scenarios. (You'll find the StringBuilder class in the
System.Text namespace.)

Using the StringBuilder

This example will show you how to use the StringBuilder class and will compare its
performance against the performance of classic Visual Basic string concatenation. To begin,
follow these steps:

1. Create a windows project and build a window that looks the same as Figure 7-1, using
the parameters in Table 7-1.

i) StringHuildar class example

[sirSiring = shSiring _“shing o' |

obftingblulder = obS ringBulde.Append]sing value™)

The: frat bufton concatinates stings the classic VB may whis
the tecond button ubad the & e class. Ench il loop
hrewgh sach eone alination 1 lierns:

Figure 7-1: Using the StringBuilder class.

Table 7-1: Parameters for the StringBuilder Class
Control Property Value

Button Name PtnString
Text strString = strString & 'string value'

Button Name BtnStringBuilder

Text objStringBuilder = objStringBuilder.Append('string
value')

Label Name 1blStringDisplay
Label Name 1blStringBuildingDisplay

Label Text The first button concatinates strings the classic VB way while the
second button used the StringBuilder class. Each will loop through
each concatination 15000 times.

2. Add the following code segment to the click event of the btnString button.

4 Dim dateStart As Date

5. Dim strString As String

6. Dim i As Integer

7

8. dateStart = DateAndTime.TimeOfDay

9.

10. For i = 1 To 15000

11. strString = strString & "string value"
12. Next i

13. 1blStringDisplay.Text = DateAndTime.DateDiff (DatelInterval.Second,
14. dateStart, DateAndTime.TimeOfDay) & "Seconds"
S

e

18. Dim dateStart As Date
19. Dim objString As New System.Text.StringBuilder ()
20. Dim i As Integer

21.

22. dateStart = DateAndTime.TimeOfDay

23.

24. For i = 1 To 15000

25. objString = objString.Append("string value")

26. Next 1

27. lblstringBuilderDisplay.Text = DateAndTime.DateDiff (

28. DatelInterval.Second, dateStart,
29. DateAndTime.TimeOfDay) & "Seconds"
1

31. Now run the example and press each button. You will see a significant difference
between the performances of the two methods of string concatenation.

Note Previously, strings were built by simply adding one onto the end of another. This only
seems to be what is happening. What is actually occurring is something different. When
adding one string to another, you begin with the original string in memory, then a new
string is allocated in memory for the string being added. Next, a new string representing
the new concatenated string is created and the new string placed into it, and finally, the
original string and the added string are de-allocated, leaving only the newly
concatenated string in memory.

As you might imagine, this is a very inefficient process for simply adding two string values
together. The StringBuilder class is a collection of characters. The StringBuilder character
collection can allow values to be added and removed without the need to re-allocate and de-
allocate memory blocks. As you will see, the performance difference is significant.

Structures

Classic Visual Basic allowed developers to create their own data types called User Defined
Data Types or UDTs, which were implemented using the Type keyword. Visual Basic .NET
has retired the Type keyword and replaced it with the keyword Structure, like so:

Public Structure Person
Dim strFirstName as String
Dim strLastName as String
End Struct

Variable Scope

All variables have a predefined scope that is assigned during initialization. Listed below are a
few of the most common scope declarations and their definitions.

e Private scope: Defines a variables scope as restricted to the current method. A
variable defined as having private scope is referred to as a member variable and is
commonly prefixed with an "m".

e Public scope: Allows the parent class, or calling class, access to the data held by a
public variable or method.

o Friend scope: Similar to public scope as far as all code within a project is concerned.
The difference between the public scope and friend scope is that variables or methods

that are defined with the friend scope cannot be accessed by a parent class outside of
the project.

e Protected scope: A new scope declaration that allows access to classes that inherit
from the variables class.

Regions

The #Region directive allows you to organize your code into collapsible blocks which help to
make the code window easier to work with by displaying only those functions you are
working with. Each region can be defined with a name helping each region to be more easily
identifiable, as shown here

#Region "MyRegion"
'some code
#End Region

When you are done writing "some code," you can collapse the region and begin working on
the next segment of code.

Windows Forms

Visual Basic .NET implements Windows Forms as classes that inherit windows functionality
from the Form class found in the System.Windows.Forms namespace. Developing Win32
applications in Visual Basic .NET is still very similar to classic Visual Basic windows
development in that windows controls can be dragged and dropped onto the form designer.
The difference is that none of the implementation code is hidden.

For example, here's the implementation code for the Windows Form discussed in the previous
example of the StringBuilder class. While this type of code must be implemented in classic
Visual Basic forms, it is hidden. As you can see, the code is no longer hidden; however, I
would strongly recommend leaving this code alone unless you really know what you are
doing and have a specific need to fill. Take a look at the code below and notice that the entire
form is actually a class that inherits the System. Windows.Forms.form class. As mentioned
earlier in this book, everything in .NET is a class. There are no exceptions.

Public Class Forml
Inherits System.Windows.Forms.Form

#Region "Windows Form Designer generated code"

Public Sub New ()"
MyBase.New ()"

'This call is required by the Windows Form Designer.
InitializeComponent ()

'Add any initialization after the InitializeComponent () call

End Sub

'Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose (ByVal disposing As Boolean)
If disposing Then
If Not (components Is Nothing) Then
components.Dispose ()

End If
End If
MyBase.Dispose (disposing)

End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the Windows Form Designer

End Sub

#End Region
End Class

The implementation code for all the controls on the form were stored in the "Windows Form
Designer generated code" region. (This information has been removed so you won't be
distracted from the Windows Form's own implementation.)

Project Structure

While the Visual Basic compiler used a file's extension to determine what type of project file
it was, Visual Basic .NET implements all code through classes. All Visual Studio .NET needs
to know is the language the file is written in.

Project groups in Visual Studio have proved to be a powerful tool for managing, building, and
debugging multiple project solutions. Visual Studio .NET replaces the Group Project with a
Project Solution, which is one or more projects and the supporting files. Because solutions
actually contain projects and items, they are often referred to as Solution Containers. And,
because projects also contain files, it should come as no surprise that projects are referred to
as Project Containers.

Solutions and project files each have their own extensions so that Visual Studio .NET knows
what kind of container they are:

e .sIn: The file extension of a solution file which maintains all solution specific
information.

o .suo: The file extension of all Solution User Options files which maintains all of the
user's preference information for the solution.

e .vbproj: The file extension of all Visual Basic project files.

e .vb and .cs: The file extensions of Visual Basic .NET and C# files, respectively. This
is a significant improvement from previous versions of Visual Studio when forms,
classes, and other components were given component specific file which offered no
clue as to the language used to build the file. Project items built using a specific

language will always have that language's file extension, thus allowing Visual Studio
NET to know which compiler it must use. (For additional information on file
extensions of project items, refer to the MSDN article entitled, "File Types and File
Extensions in Visual Basic and Visual C#".)

ErrorProvider

One of the more interesting Windows and Web Form improvements is the ability to alert the
user of exceptions without interrupting them until they press a button that performs validation,
providing better overall user experience. The ErrorProvider component is a non-visual
component that allows you to perform data validation on form controls. If a data violation
occurs, you can set a message to be displayed as a tool tip near the offending control.

Ideally, you should implement data validation, a type of business rule enforcement, at the
lowest common layer. The most ideal place to do so is at the database level because this is the
only application layer that cannot be bypassed. Furthermore, rules enforced here are not
duplicated as they would be if you implemented business rules in the presentation layer. For
example, if a name can be equal to or less than 20 characters and the rule is implemented in
the presentation layer, then every form that supports the use of the name must implement the
same rule. If the rule is changed, it must be changed in every form that uses the name. This is
both sloppy and error prone.

Current technology does not lend itself to this level of data validation very easily; however,
over time Microsoft will devise better validation schemes and developers will build custom
solutions. The challenge is to provide solid data validation without compromising user
experience. To implement data validation in the presentation layer means that we are
duplicating business rule enforcement because the same rules are surely implemented in the
database as well. Of course the risk is that when the database schema changes, we may miss
making the same changes in the presentation layer.

If all business rules are implemented in the Component layer, it is possible to bypass the rules
by ignoring the Component layer or building another one that does not implement the rule. In
such a case, you have the potential of corrupting data that will be more expensive to repair
then it would have cost to devise a sound business rules enforcement schema.

Note The XML Schema is excellent place to begin looking for sound business rule
implementation. By pulling the database schema from the database and persisting it in
memory, you can leverage XML Schema to enforce data types and constraints. Also,
when building your web page dynamically you can enforce these data specific rules
through the ErrorProvider. In this case, you are implementing rules at the business level
layer, which were defined in the database at design time; the violation can be made
known through the ErrorProvider at the presentation layer. This is the ideal way to
enforce data specific business rules; all other programmatic business rules should be
implemented in the business level layer. Never enforce business rules in the presentation
layer.

Implementing Namespaces

Namespaces make it easy to organize classes, functions, data types, and structures into a
hierarchy. Namespaces allow you to quickly access classes and methods buried in the .NET

Framework Class Library or any other application that provides a namespace. The .NET
Framework Class Library provides hundreds of classes and thousands of functions as well as
data types and structures.

Use the Imports statement to import a namespace for easy access to its classes and methods.
Once imported it is no longer necessary to use a fully qualified path to the desired class or
method. For example:

Table 7-2 lists the namespaces that are used most commonly and their general functionality.

Table 7-2: Commonly Used Namespaces
Namespace Functionality

Microsoft.VisualBasic Contains the Visual Basic .NET runtime, classes, and methods
used for compiling Visual Basic code.

Microsoft. VSA Provides a host of scripting functionality, allowing you to give
users the ability to customize of your application.

Microsoft. Win32 Provides access to the Windows Registry and the ability to
handle events raised by the operating system.

System Provides basic classes and methods commonly used by all
NET languages. Includes data types, arrays, exception classes,
Math functions, Garbage collector, conversion classes, console
access, and the Object class along with many more commonly
used components.

System.Collection Provides interfaces and classes used for creating a variety of
collection types.
Collection types are

e ArrayList: Basic collection object.

e BitArray: A collection of bits. (0 and 1 values)

e DictionaryBase: Implements base class for strongly
typed collections supporting key (name) value pairs.

o HashTable: High performing collection of key (name)
value pairs.

e Queue: FIFO (First-in First-out) collection.

o SortedList: A collection of key (name) value pairs
sorted by the key (name).

e Stack: LIFO (Last-in First-out) collection.

e Specialized.ListDictionary: A faster collection than a
HashTable for 10 items or less.

e Specialized.HybridDictionary: Acts as a ListDictionary

Table 7-2: Commonly Used Namespaces
Namespace Functionality

until the collection gets larger where it converts to a
HashTable.
e Specialized.StringCollection: A collection of strings.

System.ComponentModel Provides classes and interfaces for runtime and design time
behavior including the ability to contain or to be contained.

The Container interface allows the Visual Studio .NET
development environment to provide a graphical interface
when developing a component.

System.Data Provides classes and interfaces to support data access including
ADO.NET, XML, OLEDB, and SQL Server access.
System.Diagnostics Provides classes, allowing access to

e Event Log: A mechanism employed by the operating
systems providing a common area to record application
and system events. Events can include errors, warnings,
and informational data.

e Processes: Provides the ability start and stop processes
as well as monitor processes on remote machines.

e Performance Counters: Provides the ability to monitor
performance of local and remote machines including the
ability to define and create customer performance
counters.

System.DirectoryServices Provides the ability to search and interact with Active Directory
services providers:

e Active Directory is a hieratical mean for logically
organizing network and system resources.

e Active Directory providers include IIS, LDAP
(Lightweight Directory Access Protocol), NDS (Novel
NetWare Directory Service), and WinNT directory
services.

System.EnterpriseService Provides the ability to employ COM+ functionality for building
enterprise applications.

System.Globalization Provides classes supporting multiple languages and cultures
including date formats, calendars, and currencies.

System.IO Provides read and write access to data streams and files.
Additional access is provided to related tasks including:

e Manipulation of the creation, modification, and deletion
or file directories.
e Manipulation of files through creation, modification,

Table 7-2: Commonly Used Namespaces

Namespace

System.Management

System.Messaging
System.Net
System.Reflection

System.Runtime.Remoting

Functionality

deletion, coping, and moving.

o Provides information about files and directories, such as
the existence of a file or directory, the extension of files,
and the full path of files.

e Allows access to system events including file system
changes.

Provides access to information provided by WMI (Windows
Management Instrumentation) including information about a
systems drive space and CPU Utilization. Please refer to WMI
for additional information concerning data that can be derived
from the System.Management namespace.

Provides classes for managing Message Queues.
Provides classes for commonly used network protocols.

Provides classes for access to component metadata stored in an
assemblies manifest.

Provides classes designed for building distributed applications
similar to classic DCOM (Distributed Component Object
Model).

System.Runtime.Serialization Provides classes designed to serialize objects into a sequence of

System.Security
System.ServiceProcess
System.Text
System.Tread

System.Timer

System.Web

System.Windows.Forms

System. XML

bits for storage or transfer to another system.

Implements the CLR's (Common Language Runtime) security
components.

Provides classes required for building Windows Services.

Provides classes for manipulating string data. Most notable is
the StringBuilder class defining a modern approach to string
manipulation.

Provides classes for building multi-threaded applications.

Provides classes for implementing non-visual timed events
allowing actions to be taken on a given interval.

Provides classes and additional subordinate namespaces
encompassing all aspects of web development including ASP
.NET, Web Services, and web controls and more.

Provides classes required for developing windows form
applications.

Provides classes for manipulating and using XML.

Structured Exception Handling

One of the more complex and important aspects of application development is error handling.
Errors that are not handled can have devastating effects on the success of any application
because, in most cases, the application will not be able to recover or shut down gracefully.

Among the challenges is the lack of comprehensive error handling across languages and
platforms.

To complicate matters further, handling errors is only the tip of the proverbial iceberg. As
important as error handling is, an application must be able to handle unacceptable application
level events or exceptions that are not necessarily system generated error. Now, the term
"error handling" is no longer sufficient.

Exception handling deals with any system or application generated error, what we now refer
to as an exception. This ability to handle all exceptions, both system and application
generated, goes a long way toward giving the user a stable application and a better overall
user experience.

The CLR is a language independent means for exception handling that places all raised or
thrown errors into an exception object that can be manipulated like any other object. In
addition, the exception object can be created and used, programmatically, anywhere within an
application.

The CLR implements exception handling with the Try/Catch/Throw model. This model of
exception handling, while foreign to Visual Basic programmers, is well known by C++
programmers. This is a structured exception handling model that is time tested and proven as
a solid means for handling or dealing with thrown exceptions.

Throwing an exception is similar to raising an error in Visual Basic. The simplest exception
structure is as follows:

Public Sub MySub ()
Try
'Some code
Catch
'Deals with any exception that may occur.
End Try
End Sub

In its most basic form, all application and exception code goes into what is called a Try block.
In this example, the Try block is the area between the Try and the End Try statements.

The Try block can be divided into three clauses. The area between the Try and Catch
statements is where you place your applications code. The area between the Catch and, in this
case, the End Try statements are where your exception handling code resides. Another
section, defined as the finally clause, is available in the last clause where the Try blocks code
executes. Our simple exception handling example does not use the finally clause as it is not
required when a Catch statement is available.

Exception Handling Rules

A set of rules governs how the Try block can be used. But before we have a look at these
rules, let's take a quick look at some of the classes that support exception handling.

Table 7-3 lists several common exception classes you can look forward to using. Exception
classes are thrown when a related exception is thrown; when looking for exceptions look for
the following:

Table 7-3: Exception Classes
Exception Class Reason Exception Class Is Thrown

System.AppDomainUnloadedException Thrown when attempting to use an unloaded
application domain.

System.ApplicationException Thrown when a non-fatal application error has
occurred.

System.ArgumentException Thrown when an argument passed is not valid.

System.ArgumentNullException Thrown when a null is passed as a method

parameter that does not accept null values.

System.ArgumentOutOfRangeException Thrown when a passed value is outside the range of
a methods parameter.

System.ArithmeticException Thrown when an error occurs while performing
arithmetic and conversion operations.

System.ArrayTypeMismatchException Thrown when adding a value of the incorrect data
type to an array.

System.DivideByZeroException Thrown whenever a value is divided by zero.
System.DIINotFoundException Thrown when a DLL referenced as imported is not
available.

System.IndexOutOfRangeException Thrown when trying to access an invalid index in an
array.

System.InvalidCaseException Thrown when an invalid conversion attempt is
made.

System.NullReferenceException Thrown when attempting to dereference a null
object reference.

System.OutOfMemoryException Thrown when memory is not available to perform
the specified task.

System.OverflowException Thrown when an operation overflow occurs.

System.RankException Thrown when an array with the wrong number of
dimensions is passed to a methods parameter.

System.SystemException Is the base class for all exception classes in the
System namespace.

System.Data.ConstraintException Thrown when a constraint is violated.

System.Data.DataException Thrown when an ADO.NET component generates
an error.

System.Data.DBConcurrencyException Thrown when the number of rows affected in an
update procedure is zero.

System.Data. Thrown when attempting to perform data
DeletedRowInaccessibleException manipulation operations on a data row that has been

Table 7-3: Exception Classes

Exception Class

System.Data.
InvalidConstraintException

System.Data.
NoNullAllowedException

System.]O.
DirectoryNotFoundException

System.IO.FileLoadException
System.IO.IOException
System.IO.PathToLongException

System.Runtime.Remoting.
RemotingException

System.Runtime.Remoting.
RemotingTimeoutException

System.Runtime.Remoting.
ServerException

System.Runtime.Serialization.
SerializationException

System.Web.HttpException
System.XML.XmlException

Basic Rules

Reason Exception Class Is Thrown

deleted.
Thrown when a data relationship is violated.

Thrown when inserting a null value where one is not
accepted.

Thrown when a specified directory cannot be found.

Thrown when a file cannot be loaded.
Thrown when an 1/O error occurs.
Thrown when a path or file name are too long.

Thrown when an error occurs during a remote
operation.

Thrown when the response of a server or client
exceed a predefined interval.

Thrown when an error occurs while working with a
remote component that is an unmanaged application
incapable of throwing an exception.

Thrown when an error occurs during the
serialization or deserialization of a component.

Allow an http exception to be thrown.

Provides exception information about the last XML
exception.

Basic rules govern the use of a Try block. (They will quickly become obvious after using Try

blocks a few times.)

e All Try blocks must employ at least one catch or finally clause.

e A Catch clause with no other parameters will catch all unhandled exceptions.

o The finally clause always executes when available except when an Exit Try occurs. As
such, the finally clause is a good place to perform component cleanup. If an Exit Try
statement is used anywhere in the Try block then it is better to perform cleanup after

the End Try block statement.

e Developers familiar with the On Error statement may still perform error handling as
they did in Visual Basic only when a Try block does not exist in the procedure.

Exception Handling Examples

For the following examples we will create a single Windows Form and add a button for each
example. To begin, create a new project and name it "Exception Handler".

Try...Catch

One popular and easy way to understand an example of error handling has always been the
divide by zero error, or in .NET terms "exception." You will use the divide by zero exception
wherever possible so as to not distract you from what the chapter is trying to convey. (You
will examine a few other specific exception conditions later in this chapter.)

This example demonstrates the simplest of all exception structures:

1. Drag a button onto your Windows Form and label it "Try...Catch".
2. Change the buttons name to "btnTryCatch".
3. Apply the following code in the click event of the button.

Dim intResult as Integer"
Dim intl as Integer 5
Dim int2 as Integer = 0
Try

intResult = intl / int2
Catch objException as System.OverflowException
Messagebox.Show ("Divide by zero has occurred")
End Try

The preceding example evaluates the exception object by using the catch clause. The catch
clause checks to see if the exception object contains an "OverflowException" exception. If so,
and in this case it will, the code in the catch clause executes.

The Finally Clause

This example employs the same code as the one previously, except it demonstrates that the
Finally clause always executes:

1. Drag another button onto your Windows Form and label it "Finally".
2. Change the buttons name to "btnFinally".
3. Apply the following code in the click event of the button.

Dim intResult as Integer
Dim intl as Integer 5
Dim int2 as Integer = 0
Try

intResult = intl / int2
Catch objException as System.OverflowException

Messagebox.Show ("Divide by zero exception has occurred")
Finally
Dim obj As New System.Text.StringBuilder ()
obj = obj.Append("Regardless of whether or not an ")
obj = obj.Append ("exception occurs, the Finally clause ")

obj = obj.Append("will execute.")
MessageBox.Show (obj.ToString)
obj = Nothing
End Try

Feel free to remove the errant code with "intResult = intl / 1" and observe that the
finally clause still executes.

The Exit Try Statement

This example demonstrates the Exit Try statement. You could simply add the Exit Try
statement to a previous example: however, go ahead and create a new button to keep each
example separate for future reference.

1. Drag another button onto your Windows Form and label it "Exit Try".

2. Change the button name to "btnExitTry".

3. Cut and paste code from the Finally button to the Exit Try button.

4. In the Catch clause, place the "Exit Try" statement after the messagebox statement:
15 1S
6. Dim intResult as Integer

7. Dim intl as Integer = 5

8. Dim int2 as Integer = 0

9. Try

10. intResult = intl / int2

11. Catch objException as System.OverflowException

12. Messagebox.Show ("Divide by zero exception has occurred")

13. Exit Try

14. Finally

15. Dim obj As New System.Text.StringBuilder ()

16. obj = obj.Append("Regardless of whether or not an ")

17. obj = obj.Append("exception occurs, the Finally clause ")
18. obj = obj.Append("will execute.")

19. MessageBox.Show (obj.ToString)

20. obj = Nothing

21. End Try

2 e e e e e e e e e e e ettt e e e e e

You will notice when the exception occurs, the exceptions message is displayed and the Try
block is exited. In this case, the Finally block does not execute and is not a good place to
clean up objects in memory.

Multiple Catch Statements

It is often preferable to use Multiple Catch statements in a single Try block, although the
placement of Catch statements can impact performance.

Once an exception is caught, the processing of the remaining Catch statements is aborted.
Subsequently, once the Catch clause completes processing, the Finally clause is processed if
available. To increase the performance of your Try blocks, place the most likely one to error
or more common exceptions in the first Catch blocks while placing the least likely errors
toward the end.

Here's how to use Multiple Catch statements:

1. Drag another button onto your Windows Form and label it "Multiple Catch".
2. Change the button name to "btnMultipleCatch".

3. Cut and paste code from the Finally button to the Multiple Catch button.

4. Make the following changes as highlighted in the code below:

D e e e e e e e e e e e e e e e e e e et e e
6. Dim intResult As Integer

7. Dim intl As Integer = 5

8. Dim int2 As Integer = 0

9. Dim strl As String

10.

11. Try

12. strl = intl / int?2

13. Throw (New Exception("A different exception"))

14. Catch objException As System.OverflowException

15. MessageBox.Show ("Divide by zero exception has occurred")
16. Catch

17. MessageBox.Show ("Some other exception has occured.")

18. Finally

19. Dim obj As New System.Text.StringBuilder ()

20. obj = obj.Append("Regardless of whether or not an ")

21. obj = obj.Append ("exception occurs, the Finally clause ")
22. obj = obj.Append("will execute.")

23. MessageBox.Show (obj.ToString)

24. obj = Nothing
25. End Try
e

As you step through the procedure you will notice that you no longer receive an overflow
exception. You will also notice that the string value receiving the results of the calculation has
the value "infinity" when dividing a number by zero. The overflow exception does not occur,
however, when we threw an exception to the calling method. The first Catch clause is
completely ignored, but the second Catch clause is not looking for any specific exception; as a
result, the second Catch clause catches all exceptions not already caught.

Note Historically, when you were building COM components, the best practice was to ensure
that all methods and components handled their own exceptions. The best practice with
.NET components is to pass the exception to the client and allow the client to determine
the next course of action. This is due in part because all languages now understand how
to deal with each other's languages exceptions, therefore, it is no longer critical for the
language catching the exception to also deal with the exception. Also, exceptions don't
always correlate to an error that occurred. Often an exception simply indicates an
application state that is not what the method requires. This could be as simple as the
database is not available. In this care, no error has occurred in the code; however,
because the database is unavailable, the method cannot complete its assigned task.

Getting Exception Information

The exception class has several properties and methods. You'll learn about a few of the more
notable ones here and then examine an example of each:

e Source property: The Source property of the exception class is intended to hold the
application or object name generating the exception. It can also be programmatically
set, but if it is not set, the property returns the assembly name where the exception
occurred.

e Message property: The Message property is a string containing a description of the
current exception.

o TargetSite property: The TargetSite property is a string containing the name of the
procedure where the exception occurred.

e GetType method: The GetType method is inherited from the System.Object class and
returns the type of exception that has occurred.

e ToString method: The ToString method returns a string describing the current
exception including information provided by several other exception class properties
and methods.

Exception Class Properties and Methods Example
This example demonstrates the use of some exception class properties and methods:

1. Drag another button onto your Windows Form and label it "Properites/Methods."
2. Change the button name to "btnPropMeth."

3. Cut and paste code from the Finally button to the Properties/Methods button.4. Add
the following code to the newly pasted code:

A e e e e e e et et et et e e e e e

5. Dim intResult as Integer

6. Dim intl as Integer = 5

7 Dim int2 as Integer = 0

8. Try

9. intResult = intl / int2

10. Catch objException as System.OverflowException

11. Messagebox.Show ("Divide by zero exception has occurred")

12.

13. 'Source, Message, TargetSite, GetType, ToString

14. MessageBox.Show ("Source: " & objException.Source())

15. MessageBox.Show ("Message: " & objException.Message())

16. MessageBox.Show ("TargetSite: " & objException.TargetSite.Name)

17. MessageBox.Show ("GetType.Name: " & objException.GetType.Name)

18. MessageBox.Show ("ToString: " & objException.ToString/())

19. Finally

20. Dim obj As New System.Text.StringBuilder ()

21. obj = obj.Append("Regardless of whether or not an ")

22. obj = obj.Append("exception occurs, the Finally clause ")

23. obj = obj.Append("will execute.")

24. MessageBox.Show (obj.ToString)

25. obj = Nothing

26. End Try

Object-Oriented Programming (OOP)

As mentioned earlier, Visual Basic did not meet the test as a true object-oriented language
that implements true object-oriented programming as defined by abstraction, encapsulation,
polymorphism, and inheritance. Visual Basic .NET not only supports inheritance, but also

supports a variety of inheritance implementations including interface, forms, and
implementation or polymorphism inheritance.

Before you continue any further, let's briefly discuss the four main concepts of object
orientation and the implementation code for each. Each brief discussion is followed with an
example that demonstrates the discussed OOP concept.

Abstraction

Abstraction is the easiest of the OOP concepts to understand and is often something we
implement naturally without realizing it. In short, abstraction is the implementation of code to
mimic the actions and characteristics of any realworld entity.

The most commonly-used example for describing abstraction is the abstraction of a person.
Imagine that we want to create an object from a class that represents a person. A person class
will need to describe its characteristics through the implementation of properties. Actions of
the person class are performed by methods.

Encapsulation

Encapsulation is the programmatic equivalent of a black box. An actual black box may have a
switch and dials. Inside the box would be the mechanisms to perform the actions provided by
the black box.

We expose properties and methods through abstraction, but we implement the actual workings
of our component through encapsulation. A few encapsulated actions might include data
access, data validation, calculations, adding data to an array or collection, or calling other
methods or other components.

Exposing our components interface while hiding the component's implementation code
effectively separates interface implementation from our black box implementation. This
separation helps to modularize components to perform a more specific task while requiring
minimal knowledge of how the black box actually works.

One of the more useful applications of encapsulation is in making a complex component. For
example, your program may require interaction with a third party system, but interaction with
this system can only be achieved through a complex API. Rather than requiring all developers
on a project to spend valuable time figuring out how to correctly use the third party API or
even find ways to misuse it, one developer could study the API then encapsulate it in a
component that exposes a less complex interface. This is a common practice that saves time
and reduces potential bugs.

Like abstraction, encapsulation isn't as much a technology as it is a method of code

implementation. In the case of encapsulation, our method of implementation separates the
exposed interface from the actual implementation code.

Polymorphism

Abstraction is an interface implemented to represent a real-world object; encapsulation is the
implementation of a black box through interface and implementation separation; and

polymorphism is the ability to implement the interface of another class into multiple classes
or to implement multiple interfaces on a single class. This method of implementation is
referred to as interface-based programming.

A vehicle is a good example of polymorphism. A vehicle interface would only have those
properties and methods that all vehicles have, a few of which might include paint color,
number of doors, accelerator, and ignition. These properties and methods would apply to all
types of vehicles including cars, trucks, and semi-trucks.

Polymorphism will not implement code behind the vehicle's properties and methods. (That's
the job of inheritance covered in the next section.) Instead, polymorphism is the
implementation of an interface. If the car, truck, and semitruck all implement the same vehicle
interface, then the client code for all three classes can be exactly the same.

Implementing the vehicle interface only requires the declaration of properties and methods.
To create a new interface, use the Interface keyword in place of the Class keyword. The client
implementing the new interface can do so by using the Implements keyword as shown in the
example:

After using the Implements keyword, you will notice that Intellisense displays the properties
and methods of the IVehicle interface. Using the Implements keyword will only give access to
the properties and methods of the IVehicle interface; however, you must provide your own
code behind the methods and property declarations to match the interface.

Inheritance

Inheritance is the ability to apply another class's interface and code to your own class.
Remember, with polymorphism, you got the interface; however, you must apply your own
code. The power of inheritance is the ability to inherit code, saving developers time. This type
of inheritance is called implementation inheritance. To inherit another class, use the Inherits
keyword.

Visual inheritance is the ability to inherit another form's look and feel onto another.
Remember, everything in .NET is a class, including forms. If you create a project that exists
in the MyApp namespace, create a form name MyBaseForm. The following code will inherit
the MyBaseForm within our new form:

Public Class MyNewForm
Inherits MyApp.MyBaseForm
End Class

Properties

Properties are part of a program's interface and describe the characteristics of a class. These
properties hold information about a class or, when loaded into memory, an object. Properties,
as they exist in classes, are often referred to as "data." When a reference is made to a class's
data, you will know that the reference is actually directed toward a class's property.

To create a property, use the Property keyword and then define the type of property you are
implementing. Properties can be read-only, write-only, or read and writable. To define the
characteristics of properties, use the keywords ReadOnly, WriteOnly, or supply no definition
at all to implement both read and write ability.

Visual Studio .NET makes properties easier to implement by adding the basic shell of
property code based on the property's scope definition. Unlike Visual Basic, Visual Basic
NET automatically supplies code for both read and write functionality: "Get" for read ability
method and "Set" for write access to a property.

Create a new class, type the following code, and press ENTER:

Public Property FName () As String

Visual Studio .NET will automatically fill in the rest of the code that is required by the
FName property:

Get
Return m FName
End Get
Set (ByVal Value As String)
m FName = Value
End Set
End Property

Methods

Methods are the actions exposed by a class in the form of either functions or sub-procedures.
Sub-procedures and functions both execute code on behalf of the calling application, but sub-
procedures simply execute code while functions execute code, then return a value.

The .NET Framework provides at least two new changes to how you can use procedures. In
Visual Basic, you could call a procedure without the use of parameters, including procedures
that required no parameters at all. The .NET Framework requires parenthesis to follow all
methods even when parameters are not required. For example:

e Visual Basic 6 method call:

Another change is the addition of the Return keyword. When returning a value for a function
in Visual Basic, you set the function's name equal to the value being returned. With Visual
Basic .NET, you can set the keyword Return equal to a value and the value will be returned
with the function. This is very useful when making code more generic. For instance, you can
easily cut and past a method's code without regard to another method's function name because
the keyword Return is used for setting the method equal to a return value. Examples of the old
versus new method for returning values of a function are:

Visual Basic 6 method call:

Public Function DoSomething() as Int32
o DoSomething = 10
o End Function

° Public Function DoSomething() as Int32
° Return = 10
o End Function

If you look closely at a function's supporting properties you will find that the Return keyword
is used by default. You can set the function name equal to a given value.

The third significant change is in how parameters are passed. Visual Basic passed a parameter
value ByRef by default. The preferred method for passing parameter values is to explicitly
define whether a value is passed by ByRef or ByVal. Finally, when using the Option
keyword, you must define a default value similar to how C has worked for many years now.

Declaration Options
We have covered a few of the most common declaration methods including those that
describe the scope of a property or method. Several description options will extend or restrict

scope.

Here is a list of the most commonly-used declaration options with brief descriptions of each:

o Private: The Private keyword defines a variable or method as accessible only by code
within the context of where the declaration occurred; outside code is not permitted
access. Variables and methods defined as private are often referred to as member
variables or methods, and commonly prefixed with an "m".

e Public: The Public keyword declares a property or method as accessible by anyone
within the calling application or within the class itself.

e Friend: The Friend keyword defines a property or method as accessible by members
within the class it is declared in.

e Protected: The Protected keyword defines a property or method as accessible only by
members of its class or by members of an inheriting class.

o Default: A Default property is a single property of a class that can be set as the
default. This allows developers that use your class to work more easily with your
default property because they do not need to make a direct reference to the property.
Default properties cannot be initialized as Shared or Private and all must be accepted
at least on argument or parameter. Default properties do not promote good code
readability, so use this option sparingly.

e Overloads: The Overloads property allows a function to be described using deferent
combinations of parameters. Each combination is considered a signature, thereby
uniquely defining an instance of the method being defined. You can define a function
with multiple signatures without using the keyword Overloads, but if you use the
Overloads keyword in one, you must use it in all of the function's Overloaded
signatures.

e Shared: The Shared keyword is used in an inherited or base class to define a property
or method as being shared among all instances of a given class. If multiple instances
of a class with shared properties or methods are loaded, the shared properties or
methods will provide the same data across each instance of the class. When one class
alters the value for a shared property, all instances of that class will reflect the change.
Shared properties of all instances of the class point to the same memory location.

e Overridable: The Overridable keyword is used when defining a property or method
of an inherited class, as overridable by the inheriting class.

e Overides: The Overides keyword allows the inheriting class to disregard the property
or method of the inherited class and implements its own code.

e NotOverridable: The NotOverridable keyword explicitly declares a property or
method as not overridable by an inheriting class, and all properties are "not
overridable" by default. The only real advantage to using this keyword is to make your
code more readable.

e MustOverride: The MustOverride keyword forces the inheriting class to implement
its own code for the property or method.

e Shadows: The Shadows keyword works like the Overloads keyword except that with
shadows we do not have to follow rules such as implementing the same signature. The
Shadows keyword does not require the consent (override ability) of the inherited class
to replace the property or method's implementation code. A method does not have to
be defined as overridable for the Shadows keyword to work.

Object Instantiation

When you drag and drop controls onto a Windows Form, you are using objects. When you
observe your code, you are looking at a class; when that code is loaded into memory, at
runtime, it is considered an object. The importance of the distinction is simply to describe that

a class is a template, while an object is an instance of that template in memory. Also, many
copies of the template can exist in memory at the same time as objects.

Fortunately, we do not have to depend on the component designer to work with classes; we
can build our own classes and components. This is nothing new for a moderately experienced
developer; what is new is how Visual Basic .NET permits us to instantiate classes.

Classic COM relied on the Windows Registry to store its exposed properties, methods, events,
and enumerations; a client application could only access these exposed interfaces through the
Registry. As a result, the way you instantiate classes when using classic COM components in
COM+ is very important. Visual Basic .NET accepts a number of instantiation methods
without performance impacts, although all variables must first be diminished and then
instantiated before they can be used.

The two methods for instantiating classic COM are the CreateObject and New keywords.
CreateObject uses the Windows Registry to obtain the interface of the class being instantiated.
Because CreateObject depends on windows for access to the register, COM+ can apply a
context for use by the COM+ services.

The New keyword in classic COM also depends on Windows for access to the Windows
Registry. The catch is that it doesn't always have to access the Windows Registry to discover
a class's interface if the class resides inside the same component as the calling class. Because
the New keyword has no problem accessing a class's interface within the same component, a
class can be instantiated by passing COM+ services that would normally add a context or
other component service. While this will not prevent you from loading a class into COM+, to
take full advantage of COM+ services you should use the CreateObject keyword.

Having said all that, the CreateObject keyword cannot be used to instantiate .NET classes,
although it can be used to instantiate classes that exist within classic COM components.
Because .NET components don't rely on the Windows Registry, the New keyword is used
when loading all .NET components.

Here are several examples of how you might define and load classes into memory. First, the
variable is diminished as MyClass:

Second, you load the class "MyClass" into memory. An instance of a class loaded into
memory is referred to as an object. Notice there is no "Set" keyword used.

Another method is to declare and instanciate an object in a single line:

Finally, you can implicitly diminish a variable with a class you are attempting to load. This is
the shortest method and is perfectly acceptable:

Early and Late Binding

Binding is something we do when diminishing a variable, though many developers may not
realize the importance of how they bind a class.

Early binding, often referred to as strong typing, refers to explicitly declaring the class used to
define a variable. Early binding has several benefits. For example, when programming, Visual
Studio .NET can give access to the class's interface with Intellisense which greatly reduces
potential for typos and promotes rapid development. Also, when early binding a class, the
Visual Basic compiler can enforce the proper use of a class's interface by providing warnings
and refusing to complete the compile until the error is resolved. But performance gains are
probably the most important reason to bind early: Early binding allows your program to
access your class's interface directly, rather than through the Windows Registry or at runtime.
If the compiler knows ahead of time which classes you will be using in your application, it
can make the appropriate compilation optimizations.

Late binding can be useful when developing against non-existent components or ones that are
being developed. Late binding allows you to continue compiling your code until the
component is available; once the class is available, you can modify your code to early bind.
You might also use late binding when you truly don't know the object type that will be passed
to your function, in which case it is perfectly acceptable to accept any type of object.

Before late binding can occur, the Option Strict option must be set to off. Option strict is off
by default:

Option Strict Off

Dim obj As Object

'or

Dim obj As System.Object

The System.Object class is the class from which all other classes are derived. While it has no
specific characteristics that prevent it from acting as any other class, it is used for late binding.

Components

A class defines something that can exist in memory. It defines an object's interface including
properties, methods, events, and enumerations as well as implementation code. An object is
an instance of a class in memory; while a class may exist only once, multiple instances of that
class may reside in memory as objects.

When adding items to a project, you can add a "class" or a "component class". In essence,
these are the same thing with one exception: a component class implements the IComponent
interface, enabling Visual Studio .NET to drag non-visual controls, such as the timer control,
onto a component designer.

Visual Studio .NET provides a designer for building components, which allows you to drag
visual controls onto your class or component, and begin coding. For example, if you want to
program a delay into your class, you can use a component item with the designer to drag the
timer control onto your component. The implementation of a graphical designer (IE
Component Designer) and container are available to you when you selected "component
class" as a new item. Visual Studio creates your class by adding a line of code that inherits
everything your class needs to be a component, as follows:

Then the designer creates a components object using the IContainer interface so that the
designer can allow drag and drop capabilities:

Simple OOP Examples

Now you'll build an example application that employs abstraction, encapsulation,
polymorphism, and inheritance:

Create a new class library project named "PersonProj".

Rename the Class1.vb file to "Person.vb".

Add a new Windows Application project to the solution named "TestClient".
Right-click on the TestClient project and select Set as StartUp Project.

b s

Adding Abstraction

Now add abstraction:

N —

3
4
5.
6.
7
8

9

10.
11.
12.
13.
14.
15.

Replace the default class in Person.vb with the following code:

Public Class clsPerson

Public
Public
Public
Public
Public
Public

Public

FName As String

LName As String
FullName As String
BirthDate As Date

Age As Integer
TotalHours As Integer

Sub Work (ByVal intHours As Integer)

TotalHours += intHours

End Sub

End Class

16. Create a form that looks like Figure 7-2, and name it "frmAbstraction.vb." Use the
parameters in Table 7-4 to build the new Windows Form.

o Tt et Rt Pl e ML | diign] - Rl i et i ol [Dheiiggi]

B [ges poed pud (b Dy Fgear Iwok gndes (wb
Eeu-Ed B & b R v | g =rfomm -1
» " -
B retheats ks B i R e TS " E
- HE o
i 2 e o oot B e
' iR] © Pree;
L A : w [l e
ded -
i g) s
1 Mewhsms | 5 g -
R— M m -
Lint Mo || i .
w— Y # Lo
oy : Eln—r- el
[| H o LT Ty -
| ol Shcen i [c e e
Hewviveiaa [T T—
Irn-\hrluh-l e
B - ¥
e
Paar s ke Ly L
e rEe -
Teat
Tt ek el T
P erpeies | i 1w e
1 rad,

Figure 7-2: Creating a new Windows Form.

Control

Button

Textbox
Textbox
Textbox
Textbox

Table 7-4: Form Parameters

Property Value
Name btnSubmit
Text Submit
Name txtFName
Name txtLName
Name txtFullName

Name txtBirthDate

17.

18.

19.
20.

21.
22.

23.
24,
25.

26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.

47.

Table 7-4: Form Parameters

Control Property Value

Textbox Name txtAge

Textbox Name txtHoursWorked
Label Name IblTotalHoursWorked

Right-click on the TestClient project and select Properties. Change the Startup object
to "frmAbstraction.vb".

Add a reference to the PersonProj. Right-click on the TestClient project and select
Add Reference. Select the Projects tab and press the "Select" button then press OK.
Add the following object declaration to the initialization of frmAbstraction form:

' Here we are initializing the Person class. Normally this would
be done

' when the class was needed for data access but in this case we
are using

' the Person class to maintain our data.

Dim objPerson As New PersonProj.clsPerson ()

objPerson.FName txtFName.Text
objPerson.LName = txtLName.Text
objPerson.FullName = txtFullName.Text

If IsDate(txtBirthDate.Text) Then
objPerson.BirthDate = CDate (txtBirthDate.Text)
End If

If IsNumeric(txtAge.Text) Then
objPerson.Age = CInt (txtAge.Text)
End If

If IsNumeric (txtHoursWorked.Text) Then
objPerson.Work (CInt (txtHoursWorked.Text))
End If

lblTotalHoursWorked.Text = "Total Hours Worked: "
& objPerson.TotalHours.ToString

Now run the application.

You should be able to place any value you wish into the First and Last name fields, then
completely contradict yourself when filling in your full name. The same should hold true for
entering your birth date and age. This example abstracts a person but does not hide any
implementation; each time you press the Submit button, the Total Hours Worked is summed
and displayed.

Adding Encapsulation

The encapsulation example implements the clsPerson class and encapsulated code, hiding the
implementation code for all the properties and methods.

In the abstraction example, the user has to enter both their birthday and age. As you
encapsulate the implementation for the Person object, you will hide the implementation of
their age. Age will be derived from the person's birth date, thus preventing a user from
creating an invalid age and birth date values. Properties are also encapsulated, allowing the
class to derive the full name from the first and last names that have been entered.

1.
2.

6.
7.

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Add a new Windows Form item named "frmEncapsulation.vb".
Add the controls and parameters listed in Table 7-5 to the frmEncapsulation.vb form.

Table 7-5: Controls for the Form

Control Property Value
Button Name btnSubmit

Text Submit
Textbox Name txtFName
Textbox Name txtLName
Label Name IblFullNameDisplay
Textbox Name txtBirthDate
Label Name IblAgeDisplay
Textbox Name txtHoursWorked
Label Name IblTotalHoursWorked

Create a new class in the Person class using the following code:

Public Class clsPerson?
Private m FName As String
Private m LName As String
Private m BirthDate As Date
Private m TotalHours As Integer

Public Property FName () As String
Get
Return m FName
End Get

Set (ByVal Value As String)
m FName = Value
End Set
End Property

Public Property LName() As String
Get
Return m LName

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

72.
73.

74.
75.
76.

7.
78.

79.

End Get
Set (ByVal Value As String)
m LName = Value
End Set
End Property

Public ReadOnly Property FullName () As String
Get
Return m FName & " " & m LName
End Get
End Property

Public Property BirthDate() As Date
Get
Return m BirthDate
End Get
Set (ByVal Value As Date)

If IsDate(Value) Then
m BirthDate = Value
End If
End Set
End Property
Public ReadOnly Property Age() As Integer
Get
If DatePart (DatelInterval.Year, m BirthDate) = 1 Then
Exit Property
End If
Return DateDiff (DateInterval.Year, m BirthDate, Now)
End Get

End Property

'Method for adding hours to m TotalHours worked.

Public Sub Work (ByVal intHours As Integer)
m_TotalHours += intHours
End Sub
Public ReadOnly Property TotalHoursWorked() As Integer
Get
Return m TotalHours
End Get

End Property

End Class

' Here we are initializing the Person class. Normally this
would be done

' when the class was needed for data access but in this case
we are using

' the Person class to maintain our data.

Dim objPerson As New PersonProj.clsPerson?2 ()

Right-click and select Properties then change the StartUp object to
"frmEncapsulation".

80. Add the following code to the Submit button:

S

82. objPerson.FName = txtFName.Text

83. objPerson.LName = txtLName.Text

84.

85. If IsDate(txtBirthDate.Text) Then

86. objPerson.BirthDate = CDate (txtBirthDate.Text)

87. Else

88. MsgBox ("Please provide a valid Birth Date.")

89. End If

90.

91. If IsNumeric (txtHoursWorked.Text) Then

92. objPerson.Work (CInt (txtHoursWorked.Text))

93. txtHoursWorked.Text = ""

94. End If

95.

96. 1blFullNameDisplay.Text = objPerson.FullName.ToString

97. 1blAgeDisplay.Text = objPerson.Age.ToString

98.

99. lblTotalHoursWorked.Text = "Total Hours Worked: "

100. &
objPerson.TotalHoursWorked.ToString

L0 L e it ettt e et e e

102. Now run the application and enter the information.

You'll notice that your age is calculated for you so that it cannot contradict what the age
should be based on the birth date, and the full name is derived from the first and last name.

Adding Polymorphism or Interface-based Inheritance

This example features an interface called IPerson and a class named Employee that uses the
[Person interface:

1. First create a new Windows Form with the same controls as used in the encapsulation
example and name it "frmPolymorphism".

2. Add a new Module to the PersonProj project and name it "MylInterfaces.vb".

3. Apply the following code to the MyInterface.vb module. The code defines the
interface.

5. Public Interface IPerson

6. Property FName () As String

7 Property LName () As String

8. ReadOnly Property FullName () As String
9. Property BirthDate () As Date

10. ReadOnly Property Age() As Integer

11.

12. 'Method for adding hours to m TotalHours worked.

13. Sub Work (ByVal intHours As Integer)

14. ReadOnly Property TotalHoursWorked() As Integer

15. End Interface
e

17. Right-click and select Properties, then change the StartUp object to
"frmPolymorphism".

18.

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

Create a new class to the Person.vb module. You will use it to inherit the new
interface:

Public Class clsPerson3
Implements IPerson
Private m FName As String
Private m LName As String
Private m BirthDate As Date
Private m TotalHours As Integer
Private m HrRate As Integer
Private m TotalPay As Double
Public Property FName () As String _
Implements IPerson.FName
Get
Return m FName
End Get
Set (ByVal Value As String)
m FName = Value
End Set
End Property

Public Property LName () As String _

Implements IPerson.LName
Get
Return m LName
End Get

Set (ByVal Value As String)
m LName = Value
End Set

End Property

Public ReadOnly Property FullName() As String _
Implements IPerson.FullName
Get
Return m FName & " " & m LName
End Get

End Property

Public Property BirthDate() As Date _
Implements IPerson.BirthDate
Get
Return m BirthDate
End Get
Set (ByVal Value As Date)
If IsDate(Value) Then
m BirthDate = Value
End If
End Set
End Property

Public ReadOnly Property Age() As Integer _
Implements IPerson.Age
Get
If DatePart (DatelInterval.Year,
m_BirthDate) = 1 Then Exit Property
Return DateDiff (DateInterval.Year,
m BirthDate, Now)
End Get
End Property

7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.

108.

You wi

'Method for adding hours to m TotalHours worked.
Public Sub Work (ByVal intHours As Integer)
Implements IPerson.Work
m_TotalHours += intHours
End Sub

Public ReadOnly Property TotalHoursWorked() As Integer
Implements IPerson.TotalHoursWorked
Get
Return m TotalHours
End Get
End Property

'Additional Properties:
'HrRate

Public WriteOnly Property HrRate ()
Set (ByVal Value)
m_HrRate = Value
End Set
End Property

'TotalPay
Public ReadOnly Property TotalPay() As Double
Get
Return m HrRate * m TotalHours
End Get
End Property
End Class

Now run this example just as you ran the previous ones.

11 not notice a difference in how the application runs, although the plumbing has

changed quite a bit.

With this simple example, it is easy to question the usefulness of polymorphism. However, if
you were to continue building an application that dealt with several aspects of a person, you
might find polymorphism more helpful to use if you had to deal with Employees, Customers,
Managers, and Contractors.

Worki

ng with Inheritance

This inheritance example inherits the interface and implementation code of the clsPerson3

class:

Add a new Windows Form item named "frmInheritance.vb". Use the same controls as
we used in the encapsulation example.
Add the following code to the initialization section of the form:

Here we are initializing the Person class. Normally this
would be done

' when the class was needed for data access but in this case
we are using

' the Person class to maintain our data.

7. Dim objPerson As New Person.clsEmployee ()

e

11. Public Class clsEmployee

12. Inherits clsPerson3
13. End Class
L s e e e e e e et ettt et et et e ettt e e e e e,

15. Right-click and select Properties, then change the StartUp object to "frmInheritance".
16. Now Run the inheritance example as you did the previous ones.

Notice that the clsEmployee class inherits the functionality of the clsPerson3 class, which in
turn implements the IPerson interface. This example demonstrates both polymorphism and
inheritance that have been combined to form a single solution.

Summary

In this chapter, you learned that Visual Basic has come a long way from a reduced featured-
set language that promoted RAPID application development to a full featured language. Now
employing full inheritance, Visual Basic promsises to aid in the delivery of enterprise level
applications that may previously have been better delivered in another OOP language.

Chapter 8: ASP.NET

ASP (Active Server Pages), Microsoft's solution for building dynamic web applications, has
come a long way in a short time. ASP.NET was designed to address the scalability and
reliability of mission critical enterprise applications not addressed by ASP.

This chapter will introduce you to web development using ASP.NET. Many of the
programming topics of the previous chapter on VB .NET also apply to ASP.NET as scripting
is no longer supported and has been replaced by .NET languages. This chapter will introduce
ASP.NET while walking you through a fully functional application.

ASP Versus ASP.NET

ASP.NET is much more than an upgrade from ASP. In fact, it's entirely different from ASP in
terms of platform and implementation. The only thing ASP and ASP.NET seem to have in
common is they both are used for building web-based applications and are supported by IIS
services.

Table 8-1 compares a few features of ASP and ASP.NET.

Table 8-1: ASP versus ASP.NET
Feature ASP ASP.NET

Table 8-1: ASP versus ASP.NET

Feature ASP ASP.NET

Application Limited scalability Multiple scalability options

State

Data Types Late-Binding Strong Typing (All variables must be

explicitly declared)

End Product Interpreted Script Compiled Code

Extensions .asp .aspx

Implementation Presentation and scripted logic Presentation and programmatic logic are
are maintained in the same stored in separate physical files.
physical file.

Language Java script and VB script Scripting languages are not supported. All

support NET languages are supported for web

development with ASP.NET.

Compiled Code

ASP supports only scripted languages though it can still instantiate and utilize COM. While
using COM to implement all business logic and data access greatly improves performance,
the remaining ASP script is still interpreted rather than compiled, as it is with ASP.NET. This
causes a performance hit because interpreted code is much slower than compiled code.

If you're building an enterprise application, your goal should be to place as much of your code
as possible into COM components. The only way to place all your code into COM
components is to return a string from your COM layer that represents the HTML you want to
display on the client. The only action taken by your ASP page is performing a
"Response.Write" on the returned string. The Response.Write command will actually imbed
the returned string into the HTML. The downside to placing all code in COM components is
that, because Visual Interdev is not built to support this type of development, debugging and
testing are very difficult.

Here's a quick example of how you might place all your code in compiled COM components
while using ASP for "Response.Write".

ASP Page

The following code will reside in the calling ASP page. This page effectively loads up an
instance of a class stored in a compiled COM component. The Response. Write command
takes the result of the myObject.myFunction method and inserts it into the HTML code that is
sent to the client browser.

Dim myObject

set myObject = Server.CreateObject ("myComponent.myClass")
Response.Write (myObject.myFunction)

Set myObject = Nothing

Function of myComponent.myClass

This is the code placed in the myComponent component. This code effectively builds the
HTML string and passes it back to the calling application which in this case is an ASP page.
The advantage is the code normally reserved for scripting and interpretation is now compiled
into a COM component that will perform better than interpreted code.

Option Explicit

Public Function myFunction ()

As String

On Error GoTo ErrorHandler
Dim strResult as string
strResult =

strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult

strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult
strResult

&

2 22 22 2 R 22 22 22 22 Y 22 22 R R R R 22 22 22 22 R R R 2 22 22 22 22 2 R R 22 22 22 22y Y 2 2 2 &y

"<%@ Language=VBScript %>"

"<HTML>"

"<HEAD><META name='VI60 DefaultClientScript'"

" Content='VBScript'><META NAME='GENERATOR'"

" Content='Microsoft Visual Studio 6.0'>"

"</HEAD>"

"<BODY>"

"<FORM ACTION='UserLoginProcess.asp' METHOD='post'"
" id=forml name=forml>"

"<p>"

"<TABLE cellSpacing=1 cellPadding=1 width=750"

" height=425 align=center"

" border=1 borderColorDark=#06767d>"

"<TBODY><TR height=50 ><TD>"

"<TABLE cellSpacing=1 cellPadding=1 width='100%"'"

" border=0>"

"<TR><TD style='WIDTH: 225px'
"</TD><TD width=100></TD>"
"<TD align=top style='WIDTH: 250px'
"User Login</TD>"
"<TD align=top></TD></TR></TABLE></TD></TR><TR>"
"<TD vAlign=top align=middle>"

"<TABLE cellSpacing=1 cellPadding=1 width='100%""
" border=0>"

align=top width=225>"

width=250>"

"<TR><TD style='WIDTH: 325px' align=top width=325"
" height=50>"
"<P align=left>"

" </P></TD>"

"<TD align=top><P align=left> </pP>"
"</TD><TD align=top></TD></TR><TR>"

"<TD align=top><P align=right>User ID:</P>"
"</TD><TD align=top><INPUT id=textl "

" style="'LEFT: 229px; TOP: 153px' name=txtUserId>"
"</TD><TD align=top></TD></TR>"

"<TR><TD align=top height=15></TD><TD align=top>"
"</TD><TD align=top></TD></TR>"

"<TR><TD align=top><P align=right>Password:</P>"
"</TD><TD align=top><INPUT id=passwordl"

" style="'LEFT: 229px; TOP: 191px' type=password"
" name=passwordl></TD>"

"<TD align=top></TD></TR><TR><TD height=10></TD>"
"<TD></TD><TD></TD></TR><TR>"

strResult = strResult
strResult = strResult
22%px;"

°g)

"<TD align=top><P align=right> </P></TD>"
"<TD align=top><INPUT id=submitl style='LEFT:

>3]

strResult = strResult & " WIDTH: 107px; TOP: 225px; HEIGHT:"

strResult = strResult & " 24px' type=submit size=33 value='Log in'"
strResult = strResult & " name=submitl></TD>"

strResult = strResult & "<TD align=top></TD></TR></TABLE></TD></TR><P></P>"
strResult = strResult & "<P></P></TBODY>"

strResult = strResult & "<P></P><P></P><P></P><P></P><P></P></FORM>"
strResult = strResult & "<P></P><KP></P><KP></P><KP></P><KP></P><P></P></P> "
strResult = strResult & "</BODY>"

strResult = strResult & "</HTML>"

myFunction = strResult

Exit Function

ErrorHandler:

Set oCn = Nothing

App.LogEvent vbObjectError + 1001 & ' '
& strErrorDescription, vbLogEventTypeError

Err.Raise vbObjectError + 1001, 'DBConnection.objNewConnection',
strErrorDescription

Err.Clear

End Function

Placing your presentation code in COM components, as you would with ASP, gives the best
possible performance and promotes scalability but is very difficult to implement and support.

With ASP.NET you get the performance and scalability advantages of compiled code with
none of ASP's disadvantages. ASP.NET completely separates presentation and business logic
into different physical files during development; then, once the project is built, the logic files
are compiled into a single DLL. When a web page is requested, the DLL sends the
appropriate HTML code to the client. Since ASP.NET was developed with compiled code in
mind, Visual Studio .NET can easily debug and test your ASP.NET application.

HTML and Server Controls

One of the more impressive features of ASP.NET is programmatic access to server controls.
Server controls are controls available at design time that can be referenced at runtime, though
at runtime the client receives the HTML equivalent of the server control. Server controls are
more flexible than HTML controls because they can be accessed programmatically, but using
server controls when no programmatic access is required hurts performance. For example, if
you have a page that uses labels, text controls, and buttons, consider using an HTML label
control for all your labels, and server controls for the text boxes and buttons. HTML controls
are fine to use except when programmatic access is required.

Server controls must be placed within an HTML form object so that they can be posted back

to the server for manipulation. You will take a closer look at the implementation of server
controls when building the sample application.

Postback

All server controls must be placed within a form object so they can be posted back to the
server, which is called postback. Postback introduces event-driven programming, previously

only enjoyed by Win32-based applications, to the Web. Each server control has a number of
events that can be fired when the page is posted back to the server.

Application State (_ViewState)

Application state management is the persistence of values the application requires to function
properly. This may include the user's id, password, and the values of other controls. A hidden
text control named viewstate holds the contents of all the controls on a page so that the
page can be generated during a postback. View state can be turned on or off at the page level
or for each individual control.

Turning Off View State at the Page Level

The preceding code snippet displays three individual page directives: The first specifies the
language used, the second enables smart navigation, and the third sets view state. View state
is demonstrated with other page directives because more often than not, several page
directives will be required. No more than one set of page directives can be used. The
following code segment will fail:

<% Page Language="vb" SmartNavigation="True" %>
<% Page EnableViewState="False" %>

SmartNavigation

ASP.NET allows web applications to be event driven, similar to what we are used to with
Win32 applications; however, Win32 applications have no need to reload. Web applications
are connectionless and therefore, each web page must be rebuilt each time the page is
submitted or when an event is fired.

SmartNavigation is a new feature available in IE versions 5 and greater that allows your page
to refresh in a way that does not flash, flicker, or reset your scroll position. Using this feature
allows you to build applications that provide a good user experience. The SmartNavigation
page directive was shown in the previous directives example for view state.

ASP.NET Address Book Walkthrough

Rather than read about the theoretical implementation of ASP.NET, you are going to build a
fully functional application. You will walk through the creation of a simple address book
application using several ASP.NET facilities.

System Requirements

Before you begin building the address book application, take a quick look at the applications
required by the example.

Visual Studio .NET

Visual Studio .NET is not required to build ASP.NET applications; however, you are taking
advantage of Visual Studio .NET for rapid application development. Therefore, Visual Studio
NET is a requirement of this example.

IIS Server

Because the web pages need a web server, you will need to install Microsoft's Internet
Information Server (IIS). This can easily be installed by selecting Control Panel from the
Settings menu option under the Start bar. Then select Add/Remove Programs and finally
select Add/Remove Windows Components.

SQL Server 2000

The address book data will be stored in SQL Server 2000. You could just as easily use an
Access database, Oracle, or any other version of SQL Server. The examples in this chapter
demonstrate the application using SQL Server 2000 because while you will not be taking
advantage of SQL Server's support for XML or Stored Procedures, these features will be
implemented into the address book later in the book.

Building the Address Book Database

Creating our address book database involves two steps. First, you'll use SQL Server
Enterprise Manager to create the database. Next, you'll run a script to build the address book
table.

Creating the Database
To create the database, follow these steps:

1. Open SQL Server's Enterprise Manager by selecting Programs from the Start menu
and clicking Enterprise Manager from the Microsoft SQL Server menu.

2. Expand the Microsoft SQL Servers group then the SQL Server group. You should be
able to see your server in the list. Expand your server's icon.

3. Right-click on the Databases folder and select New Database. The database properties
page appears and allows you to enter your new database's name, "AddressBook", and
click OK.

Creating the Table

To create the table, follow these steps:

1. From Enterprise Manager, select SQL Query Analyzer from the Tools menu.

10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.

38

Select Open from the File menu and navigate to the "Ch09 Examples" directory on the
CD-ROM that accompanies the book. Select the AddressBook.sql file and choose
Open.

The following T-SQL script is loaded:

IS B R e e I b b b b i S e e I I b b b I S e e I b b b b b S e e b b b b b b I b e e b b b b b S I e b b e
USE AddressBook
if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[AddressBook]")

and OBJECTPROPERTY (id, N'IsUserTable') = 1)
drop table [dbo].[AddressBook]
GO

CREATE TABLE [dbo].[AddressBook] (

[id] [int] IDENTITY (1, 1) NOT NULL ,

[FName] [varchar] (20) COLLATE SQL Latinl General CP1 CI AS
NOT NULL ,

[MName] [varchar] (20) COLLATE SQL Latinl General CP1 CI AS
NULL ,

[LName] [varchar] (20) COLLATE SQL Latinl General CP1 CI AS
NOT NULL ,

[NName] [varchar] (20) COLLATE SQL Latinl General CP1 CI AS
NULL ,

[SpouseName] [varchar] (50) COLLATE
SQL Latinl General CP1 CI AS NULL ,

[Address] [varchar] (50) COLLATE SQL Latinl General CPl1 CI AS
NULL ,

[City] [varchar] (50) COLLATE SQL Latinl General CP1 CI AS
NULL ,

[State] [varchar] (2) COLLATE SQL Latinl General CPl1 CI AS
NULL ,

[Zip] [varchar] (10) COLLATE SQL Latinl General CP1 CI AS NULL
14

[HomePhone] [varchar] (14) COLLATE
SQL Latinl General CP1 CI AS NULL ,

[CellPhone] [varchar] (14) COLLATE
SQL Latinl General CP1 CI AS NULL ,

[EMail] [varchar] (100) COLLATE SQL Latinl General CPl1 CI AS
NULL ,

[Comments] [varchar] (7500) COLLATE
SQL Latinl General CP1 CI AS NULL ,

[Childl] [varchar] (20) COLLATE SQL Latinl General CP1 CI AS
NULL ,
[Child2] [varchar] (20) COLLATE SQL Latinl General CPl1 CI AS
NULL ,
[Child3] [varchar] (20) COLLATE SQL Latinl General CP1 CI AS
NULL
) ON [PRIMARY]
GO
ALTER TABLE [dbo].[AddressBook] WITH NOCHECK ADD
CONSTRAINT [DF AddressBook FName] DEFAULT ('') FOR [FName],
CONSTRAINT [DF AddressBook MName] DEFAULT (' ') FOR [MName],
CONSTRAINT [DF_ AddressBook LName] DEFAULT ('') FOR [LName]
GO

e AR A AR A AR A AR A AR A AR A AR AR A AR A AR A AR A AR A AR A AR A AR A AR A AR A A kA Ak kA k%

. Select Execute from the Query menu and your table is created. If you expand the
AddressBook database and then select the Tables icon, you should see your

AddressBook table. Go ahead and close both Query Analyzer and Enterprise Manager.
For the purpose of this example, you will not need them any longer.

Creating a New ASP.NET Application
The next few steps will walk you through creating your AddressBook project:

1. Start up Visual Studio .NET and select New Project.
2. Select the ASP.NET Web Application in the Visual Basic Projects folder as shown in

Figure 8-1.
Himwr I:'rrljrr.l Fl
Brojact Typos: Toegdalica: mﬂ
3 Wl Mo Fropects -~
20 Vsl CF Fropects "E i ﬁ
o Windows Classlbrary Wincows
= St and Depdorymesnd Projects By Conitrod Libwary
¥ -\]] Cther Projects
B vsusl muds Solutions i ’ “ E
L &g
ASEMET Web ASPMET Web Web Contra
Al ator Sarvic Litwary

A preject for crosting am application with & Wish user intarface

Progect will e orested ot hitp: | Aot st [Addr essBiook.

e [] comcd | b |

Figure 8-1: The New Project dialog screen.

3. Type http://localhost/Ch09/AddressBook into the location text box and press
OK. Visual Studio .NET creates all the necessary files needed for both the new project
and solution.

4. The default aspx file created by Visual Studio .NET is WebForm1.aspx. Right-click
on this file and select Rename. Rename the file to "AddressBook.aspx".

Laying Out the Page

Laying out the page includes the placement and organization of controls on the page. You will
be using a combination of HTML and server controls. First, you will determine what the
layout should be, then you'll use HTML tables to hold the controls. Next, you will drag the
controls onto the appropriate table cells and finally set the controls properties. This will take a
little time, so please sit back and follow these instructions carefully.

Setting Up the Background
To set up the background, follow these steps:

1. Right-click on the AddressBook.aspx design view page and select Properties. This will
bring up a properties page to assist you in modifying the page properties.

2. Select the Browse button to find and select image file of your choice.

3. Using the drop box, change Page Layout to FlowLayout and press OK.

Border and Application Title

To set the border and application title, follow these steps:

N —

(O8]

Select Insert and Table from the Table menu.
Set the following Table attributes:

Rows =1
Columns = 1
Width = 700 pixels
Alignment = center
o Highlight Color = #330066
Press OK.
Create another new table by left-clicking inside our new table then selecting Table,
Insert, and Table again.
Right-click on the table, select Properties, and set the following Table attributes:

O O O O

Rows =1
Columns =1
Width = 100 percent
Alignment = center
o Border size =0
Set the following Cell attributes:

o O O O

o Alignment = left
The new table is difficult to see because the border property is set to 0; however, if
you look close enough you can see a lightly blurred border. Drag Web Forms Label
from the Toolbox, drop it inside the new table, and set the following label properties.

Text = My Address Book Listings

Name = Comic Sans MS

Datagrid Control

To create a Datagrid control, follow these steps:

1.

98]

Drag a DataGrid control from the Web Forms Toolbar and drop it just below the new
table that is inside the outer table.

Right-click on the grid control and select Properties.

Rename the grid to "DataGridAddressList."

Right-click on the grid and select AutoFormat.

The AutoFormat feature of the DataGrid is a powerful tool for quickly creating a
presentable look and feel for you application's DataGrid controls. Feel free to play
around with the available grid formats.

Select Professional 3 and press OK. We will come back and format the columns when
we bind data to our DataGrid control.
Set the DataGrids width property to 690px.

Button Links

Next, you are going to add the button links the application will use for creating new contacts,
editing contacts, and deleting old contacts. Before you continue, you will need room to create
another table to hold the control. As you will observe, there seems to be no room at the
bottom of the outer table, which serves as our application's border, to insert another table.

1.

2.

e

Move your cursor immediately to the right of the DataGrid control and press enter to
insert a new space.

Click inside the new space and select Table, Insert, and then Table to create a new
table.

Set the following Table attributes:

Rows =1

Columns =4

Width = 100 percent

Alignment = center

Border size = 1 (You will set this back to 0 once we are finished dropping
controls into the cells. This should make our job just a little easier.)

Press OK.

Right-click in each first three cells of the new table and select Properties. Change the
width property of this cell to 200 pixels.

Drag-and-drop the LinkButton from the Web Form toolbox into the first three cells of
the new table.

Set the following properties of the first LinkButton control.

O O O O O

ID = IbtnNew
Bold = True
Name = Courier New
Size = X-Small
o Text=New Contact
Set the following properties of the second LinkButton control.

O O O O

ID = IbtnEdit
Bold = True
Name = Courier New
Size = X-Small
o Text = Edit Contact
Set the following properties of the third LinkButton control.

O O O O

ID = IbtnDelete

Bold = True

Name = Courier New

Size = X-Small

Text = Delete Contact

Change the table's border size property to 0.

O O O O O O

Validation Summary Control

The Validation Summary control will serve as a single location for all business rule violations
to be displayed. A description of each violation will help the user to determine what fields
need to be changed before they can continue. Classic ASP forced the page to be submitted
back to the server for validation, which did not lend itself to delivering a good user
experience. Validation control helps to implement simple data validation without forcing a
round trip to the server.

1.

Drag the ValidationSummary control and drop it onto the space at the bottom of the
border table, click just to the right of the new validation control, then hold SHIFT and
press ENTER to create a space for adding another table.

Set the following properties of the ValidationSummary control.

ID = ValidationSummary1 (This will be the default.)

DisplayMode = BulletList

EnableClientScript = False (This allows the validation to be posted back to the
server because some browsers cannot support validation script.)

HeaderText = The following validation errors have occured:

Height = 66px

ShowMessageBox = False

ShowSummary = True

Width = 733px

O O O O O

Contact Information Controls

You are going to create a table to hold the labels and controls for viewing, modifying, and
creating contact information:

1.

Click in the available space at the bottom of the border table and create a new table
with the following properties:

Rows =11

Columns =4

Width = 700 pixels

Alignment = Left

Border size = 1 (Again, you will change this back to 0 when we are done
adding new controls.)

Press OK.

Right-click inside each cell of the first row and select properties. Change the Width
property to 200 pixels.

Right-click in the cell at Row 8 and Column 3 then select Properties. Under Span set
Columns to 2.

Right-click in the cell at Row 10 and Column 1 then select Properties. Under Span set
Columns to 4. Under Horizontal set Alignment to left.

O O O O O

Placing Controls into the Table

Place each Web Form control into the new table as indicated in Table 8-2. The "Placement"
property isn't an actual property of the control. "Placement" property is where the control is to

be physically placed. The placement of a label control that is to be placed into the first cell of
the first row of the table will have a value of "Row = 1; Column = 1". After the control is

placed, right-click on the control and set the remaining property values.

Control

Label

TextBox

Label

Label

Label

TextBox

TextBox

TextBox

TextBox

Table 8-2: Web Form Controls

Property

Placement

1D
EnableViewState
Text

Placement

ID

Visible

Width

Placement

ID
EnableViewState
Text

Placement

ID
EnableViewState
Text

Placement

ID
EnableViewState
Text

Placement

ID

MaxLength
Placement

ID

MaxLength
Placement

ID

MaxLength
Placement

ID

MaxLength

Value

Row =1; Column =1
IbIFName

False

First:

Row = 1; Column = 1 (Just to the right of
IblIFName inside the same table cell)

txtID

False

56px

Row = 1; Column =2
IbIMName

False

Middle:

Row = 1; Column = 3
IbILName

False

Last:

Row = 1; Column = 4
IbINName

False

Nick Name:

Row =2; Column =1
txtFName

20

Row = 2; Column =2
txtMName

20

Row = 2; Column = 3
txtLName

20

Row = 2; Column = 4
txtNName

20

Control

Label

Label

TextBox

TextBox

TextBox

TextBox

Label

Label

Label

Label

TextBox

Table 8-2: Web Form Controls

Property

Placement

ID
EnableViewState
Text

Placement

ID
EnableViewState
Text

Placement

ID

MaxLength
Placement

ID

MaxLength
Placement

ID

MaxLength
Placement

ID

MaxLength
Placement

ID
EnableViewState
Text

Placement

ID
EnableViewState
Text

Placement

ID
EnableViewState
Text

Placement

ID
EnableViewState
Text

Placement

ID

Value

Row = 3; Column =1
IbISName

False

Spouse's Name:

Row = 3; Column =2
IblChildren

False

Children:

Row =4; Column =1
txtSName

50

Row =4; Column =2
txtChild1

20

Row =4; Column = 3
txtChild2

20

Row =4; Column =4
txtChild3

20

Row =5; Column =1
IblAddress

False

Street Address:

Row = 5; Column =2
IblCity

False

City:

Row = 5; Column = 3
IblState

False

State:

Row = 5; Column =4
1blZip

False

Zip Code:

Row = 6; Column =1
txtAddress

Control

TextBox

TextBox

TextBox

Label

Label

Label

TextBox

TextBox

TextBox

Label

TextBox

Table 8-2: Web Form Controls

Property

MaxLength
Placement

ID

MaxLength
Placement

ID

MaxLength
Placement

ID

Placement

ID
EnableViewState
Text

Placement

ID
EnableViewState
Text

Placement

ID
EnableViewState
Text

Placement

ID

MaxLength
Placement

ID

MaxLength
Placement

ID

MaxLength
Width

Placement

ID
EnableViewState
Text

Placement

ID

MaxLength

Value

50

Row = 6; Column =2
txtCity

50

Row = 6; Column = 3
txtState

2

Row = 6; Column =4
txtZip

Row =7; Column = 1
Ibl[HomePhone

False

Home Phone:

Row = 7; Column =2
IblCellPhone

False

Cell Phone:

Row = 7; Column = 3
IblEmail

False

Email Address:

Row = §; Column =1
txtHomePhone

14

Row = §; Column =2
txtCellPhone

14

Row = §; Column = 3
txtEmail

100

353px

Row =9; Column =1
IblIComments

False

Comments:

Row = 10; Column =1
txtComments

8000

Control

Label

Label

LinkButton

LinkButton

RequiredField
Validator

RequiredField
Validator

Table 8-2: Web Form Controls

Property

Placement
ID
EnableViewState
Bold
Name
ForeColor
Text
Width
Placement
ID
EnableViewState
Name
ForeColor
Text
Placement
ID

Bold
Name
Size

Text
Placement
ID

Bold
Name
Size

Text
Placement

ID
ControlToValidate
Display
EnableClientScript
ErrorMessage
Text

Placement

1D
ControlToValidate

Value

Row =11; Column =1
IblStatus

False

True

Arial

DarkSlateBlue (Web tab)
Status =

126px

Row =11; Column =2
IbIMode

False

Arial

DarkSlateBlue

Mode

Row =11; Column = 3
IbtnEnter

True

Courier New

X-Small

Enter

Row =11; Column = 4
IbtnCancel

True

Courier New

X-Small

Cancel

Row = 2; Column =1 (Just to the right of the
textbox) valRequiredFName

txtFName
Dynamic
False

The ‘First” name field is required.
%

Row = 2; Column = 3 (Just to the right of the
textbox) valRequiredLName

txtLName
Dynamic

Control

RegularExpression
Validator

RegularExpression
Validator

RegularExpression
Validator

RegularExpression
Validator

Table 8-2: Web Form Controls

Property

Display
EnableClientScript
ErrorMessage
Text

Placement

ID
ControlToValidate
Display
EnableClientScript
ErrorMessage
Text

ValidationExpression

Placement

ID
ControlToValidate
Display
EnableClientScript

ErrorMessage
Text

ValidationExpression

Placement

ID
ControlToValidate
Display
EnableClientScript

ErrorMessage
Text

ValidationExpression

Placement

ID
ControlToValidate
Display
EnableClientScript

Value

False

The ‘Last’ name field is required.
sk

Row = 6; Column = 4 (Just to the right of the
textbox) valExpressionZip

txtZip

Dynamic

False

The Zip code must be in (#####—H##) format.

*

\d{5}(~\d{41)?

Row = §; Column = 1 (Just to the right of the
textbox) valExpressionHomePhone

txtHomePhone
Dynamic
False

Must use a valid phone number for the ‘Home
Phone’.
*

(((d{33Y) NI(d{3;))Nd{3}\d {4}

Row = §8; Column = 2 (Just to the right of the
textbox) valExpressionCellPhone

txtCellPhone
Dynamic
False

Must use a valid phone number for the ‘Cell
Phone’.
*

(((d{33Y) NIOd{3;))Nd{3}\d {4}

Row = §8; Column = 3 (Just to the right of the
textbox) valExpressionEmail

txtEmail

Dynamic

False

Must use a valid ‘Email Address’.

Table 8-2: Web Form Controls

Control Property Value
ErrorMessage *
Text \WWH([—+. \wH)*@\w+([—. \w+)\\w+([—.]\w+)*
ValidationExpression

This concludes the control layout for the application. You will revisit some of the control
properties as you build more advanced functionality. Figure 8-2 represents the AddressBook
page as displayed in the ASP.NET designer.

= L drainBook - Wi cosafl Thmal Pmie HET [doriga)] - Bderambosk angr

e DR dea Pold OFF Sebel Gule Fomdl Tl Jfed Foeel Toie Wndes el
H-g-=EP I B ¥ § Datug = Ol e e - Age T

==

| T S| TEN: |
= = A
wy Adderis Rerk Likieg ¥

LUy P DY D el el

L ot b nt s el

e sl Pk adm wni EL LR)
ot mim s are Pt ad Tt mbenenb

ol i s [ETP e EETETErp—

=

dtumnu bais somtant RLEETERSTET
foofoeating wiledibion B oRp L comEd

R
T ——

' bosme G Pk M g

Figure 8-2: The AddressBook page displaying book listings.
Behavior Functions

The AddressBook web page supports multiple functions from viewing, editing, and creating
contacts. When viewing contact information, the text controls should be read-only and certain
link buttons should not be available. Each mode or function of the application will have
similar situations in which some controls are set to read or write, and some link buttons are
available while others are not.

The following functions should be placed into the Visual Basic portion of the web application.
Double-click on the web page in Design view to bring up the AddressBook.aspx.vb page and
build the following functions:

Private Sub SetControlsReadOnly ()

txtFName.ReadOnly = True
txtMName.ReadOnly = True

txtLName.ReadOnly = True
txtNName.ReadOnly = True
txtSName.ReadOnly = True

txtChildl.ReadOnly = True
txtChild2.ReadOnly True

txtChild3.ReadOnly = True
txtAddress.ReadOnly = True
txtCity.ReadOnly = True
txtState.ReadOnly = True
txtZip.ReadOnly = True
txtHomePhone.ReadOnly = True
txtCellPhone.ReadOnly = True
txtEmail.ReadOnly = True
txtComments.ReadOnly = True

End Sub
Private Sub SetControlsWritable ()

txtFName.ReadOnly = False
txtMName.ReadOnly = False
txtLName.ReadOnly False
txtNName.ReadOnly False
txtSName.ReadOnly = False
txtChildl.ReadOnly = False
txtChild2.ReadOnly False
txtChild3.ReadOnly False
txtAddress.ReadOnly = False
txtCity.ReadOnly = False
txtState.ReadOnly = False
txtZip.ReadOnly = False
txtHomePhone.ReadOnly = False
txtCellPhone.ReadOnly = False
txtEmail.ReadOnly = False
txtComments.ReadOnly = False

End Sub
Private Sub ResetControls()

txtFName.Text = ""

txtMName.Text = ""
txtLName.Text = ""
txtNName.Text = ""
txtSName.Text = ""
txtChildl.Text = ""
txtChild2.Text = ""
txtChild3.Text = ""
txtAddress.Text = ""
txtCity.Text = ""
txtState.Text = ""
txtZip.Text = ""
txtHomePhone.Text
txtCellPhone.Text = ""
txtEmail.Text = ""
txtComments.Text = ""

wn

End Sub
Private Sub SetControlsVisibleTrue ()

1blFName.Visible = True
1lblMName.Visible True
1lblLName.Visible True
1blNName.Visible = True
1blSName.Visible = True

1blChildren.Visible = True
1blAddress.Visible = True
1blCity.Visible = True
1blState.Visible = True
1blZip.Visible = True
lblHomePhone.Visible = True
1lblCellPhone.Visible = True
1blEmail.Visible = True
lblComments.Visible = True

txtFName.Visible = True
txtMName.Visible = True
txtLName.Visible True
txtNName.Visible True
txtSName.Visible = True
txtChildl.Visible = True
txtChild2.Visible True
txtChild3.Visible = True
txtAddress.Visible = True
txtCity.Visible = True
txtState.Visible = True
txtZip.Visible = True

txtHomePhone.Visible = True

txtCellPhone.Visible = True

txtEmail.Visible = True

txtComments.Visible = True
End Sub

Private Sub SetControlsVisibleFalse ()

1blFName.Visible = False
1lblMName.Visible = False
1lblLName.Visible = False
1blNName.Visible = False
1blSName.Visible = False
1lblChildren.Visible = False
1blAddress.Visible = False
1blCity.Visible = False
1blState.Visible = False
1blZip.Visible = False
lblHomePhone.Visible = False
1lblCellPhone.Visible = False
1blEmail.Visible = False
lblComments.Visible = False

txtFName.Visible = False
txtMName.Visible False
txtLName.Visible = False
txtNName.Visible False
txtSName.Visible = False
txtChildl.Visible = False
txtChild2.Visible = False
txtChild3.Visible False
txtAddress.Visible = False
txtCity.Visible = False
txtState.Visible = False
txtZip.Visible = False
txtHomePhone.Visible = False
txtCellPhone.Visible = False
txtEmail.Visible = False

txtComments.Visible = False

Page_Load

The Page Load function is the first function to execute after the controls are initialized,
giving you programmatic access to the properties.

Double-clicking anywhere on the Web Form loads the Visual Basic form and creates the
Page Load function. Place the following code into the Page Load function:

SetControlsVisibleFalse ()
SetControlsReadOnly ()
1blMode.Text = "List View"
lbtnNew.Visible = True
lbtnEdit.Visible False
lbtnEnter.Visible = False
lbtnCancel.Visible = False
lbtnDelete.Visible = False

Page.lsPostBack

ASP.NET allows access to server control properties and events through the use of PostBack.
When the page is posted back to the server, the event associated with the action that posted
the page back is executed and so is the Page Load function. It may not be desirable to execute
code in the Page Load function after the page is initially loaded. You can use the
Page.IsPostBack page property to determine if this is the first time the page has loaded or if
the Page Load function is executing as a result of a PostBack.

Add an If Not Page.IsPostBack tothe Page Load function. The end result should look
like the following:

If Not Page.IsPostBack Then
SetControlsVisibleFalse ()
SetControlsReadOnly ()

1lblMode.Text = "List View"
lbtnNew.Visible = True
lbtnEdit.Visible = False
lbtnEnter.Visible = False
lbtnCancel.Visible = False
lbtnDelete.Visible False

End If

Adding Data to the DataGrid

The first thing you need to do is import the namespaces of the data classes that you plan on
using. Place these imports statements above the AddressBook class declaration at the top of
the page. Be sure to place the sa password after "pwd="if it is not blank.

Imports System.Data
Imports System.Data.SglClient
Imports System.Text

Public Class AddressBook

Add the following code to the AddressBook class to create the PopulateAddressBook
function:

Private Sub PopulateAddressBook ()

Dim objConn As SglConnection

Dim objCmd As SglCommand

Dim objDataAdapter As New SglDataAdapter ()
Dim objDataSet As New DataSet ()

Dim strSQL As String

Dim strConn As String

strSQL = "SELECT id, FName + ' ' + MName + ' ' + LName as [Name],
NName, "
strSQL += " Email FROM AddressBook"

strConn = "server=localhost;uid=sa;pwd=;database=addressbook"

objConn = New SglConnection (strConn)
objConn.Open ()

objCmd = New SglCommand (strSQL, objConn)

objDataAdapter.SelectCommand = objCmd
objDataAdapter.Fill (objDataSet, "AddressBook")

DataGridAddressList.DataSource = objDataSet
DataGridAddressList.DataBind ()

End Sub

Now that this function is available, go ahead and add it to the Page Load function. It should
look something like this:

'Put user code to initialize the page here

If Not Page.IsPostBack Then
SetControlsVisibleFalse ()
SetControlsReadOnly ()
PopulateAddressBook ()
1blMode.Text = "List View"
lbtnNew.Visible = True
lbtnEdit.Visible = False
lbtnEnter.Visible = False

lbtnCancel.Visible False
lbtnDelete.Visible False

Jazzing up our DataGrid

In design view, right-click on the DataGrid and select Property Builder. Select Columns and
you will see the screen that's shown in Figure 8-3.

DuataGrididd ressl st Properiies

[Genersl -
._: [rasbs coboree atvarsticshy s ron be
s Colarvn ok nt
hﬁaﬁ'a Brvalabim cobm ebectwd ol
| Mg Fermat T e Colnd m * |
7 monders B mutton Colmn
I oty ok £ * !m.\”ml .|.|
ol Tessolcs Cobm 20 C-mat mddvess
W *| Xl
BemrwdC sk praparties
ILesder beakt Footer beod
= [
Header Fuigh: Cowt BT ALEen

| = | clt
Wk Pl
o

LT e L -
|

T

et s cobewn oo a Tewpeate Coln

[o | come | | mee |
Figure 8-3: The Property Builder of the DataGrid control.

You are going to use this interface to build one nonvisible and three visible columns. You
could allow the DataGrid to determine what columns to display automatically, although it is a
better practice to control the columns you wish to display.

ID Column
To set the ID, follow these steps:

1. Deselect the "Create columns automatically at run time" checkbox.

2. Select Bound Column and use the ">" symbol to move it into the Selected Columns
list box.

3. Deselect the Visible check box.
4. Set Header Text to "ID".
5. Set Data Field to "ID".

Name

To add the name, follow these steps:

1. Add another item to the Selected Columns list box, but this time, expand the Button
Column item and select and move the Select item to the Selected Columns list box.

2. Set Header Text to "Name".

3. Set Text Field to "Name".

4. Set Command name to "Select".

5. Set ButtonType to "LinkButton".
Nickname

To add the nickname, follow these steps:

1. Select Bound Column and use the ">" symbol to move it into the Selected Columns
list box.

2. Set Header Text to "Nickname".

3. Set Data Field to "NName".

Email Address

To set the email address, follow these steps:

1. Select Bound Column and use the ">" symbol to move it into the Selected Columns
list box.

2. Set Header Text to "Email address".

3. Set Data Field to "Email".

Configure Paging
To configure the page, follow these steps:

Select the Paging tab.

Select the Allow Paging check box.
Change page size to 5.

Press OK.

b

SelectedIndexChanged Function

To modify the SelectedIndexChanged function, follow these steps:

..."<asp:datagrid id="DataGridAddressList"
OnPageIndexChanged="ChangeGridPage""...

1. Switch to the presentation design view and double-click on the DataGrid. This will
bring up the SelectedIndexChanged function of the DataGrid.

2. Add the following code to the DataGridAddressList SelectedIndexChanged. This
function is executed when the Name link is selected at runtime. You will notice that
some of the functions, for instance "GetContactDetail(strID)", are not yet defined.
Ignore this for now. If you still have functions that are not defined when this exercise
is complete, double-check all spellings:

T

4. Private Sub DataGridAddressList SelectedIndexChanged(ByVal sender
As

5. System.Object, ByVal e As System.EventArgs) Handles _

6. DataGridAddressList.SelectedIndexChanged

7.

8. SetControlsVisibleTrue ()

9.

10 Dim strID As String

11.

12 strID =
DataGridAddresslList.Items (sender.selecteditem.itemIndex) .Cells (0) .Tex
t

13. GetContactDetail (strID)

14.

15. SetControlsReadOnly ()

16.

17. 1lblMode.Text = "View"

18.

19. 1lbtnNew.Visible = True

20. lbtnEdit.Visible = True

21. lbtnEnter.Visible = False

22. 1lbtnCancel.Visible = True

23. lbtnDelete.Visible = True

24 .

25. End Sub

2

ChangedGridPage

When configuring the DataGrid, you allowed paging. Paging is the ability to show only a
subset of records in the grid, while allowing for additional records to be displayed when
requested by the user. The user can request additional pages by selecting a page number
hyperlink at the bottom of the grid. Unfortunately, there is not a property for setting the name
of the function to run when the page change event occurs. For the grid control to know what
to do, you will need to set the following grid control property within the declaration of the
grid control in HTML. The statement you need to add is
OnPageIndexChanged='ChangeGridpage’. Your HTML page should look something like
this:

When this page is selected, the ChangedGridPage event occurs. Build the ChangedGridPage
using the following code:

Public Sub ChangeGridPage (ByVal sender As Object, ByVal args As _
DataGridPageChangedEventArgs)
DataGridAddressList.CurrentPageIndex = args.NewPagelndex

PopulateAddressBook ()

'The following code is same as lbtnCancel ()
SetControlsVisibleFalse ()

ResetControls ()
SetControlsReadOnly ()
1blMode.Text = "Canceled"

lbtnNew.Visible = True

lbtnEdit.Visible = False

lbtnEnter.Visible = False

lbtnCancel.Visible = False

lbtnDelete.Visible = False
End Sub

Update Page Load

It's time to add initialization code for the DataGrid control:

Private Sub Page Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here
If Not Page.IsPostBack Then
SetControlsVisibleFalse ()
SetControlsReadOnly ()
DataGridAddressList.CurrentPagelIndex = 0

DataGridAddressList.PageSize = 3
DataGridAddressList.PagerStyle.Mode = PagerMode.NumericPages

DataGridAddressList.PagerStyle.NextPageText = "Next"
DataGridAddressList.PagerStyle.PrevPageText = "Prev"
PopulateAddressBook ()

1blMode.Text = "List View"

lbtnNew.Visible = True
lbtnEdit.Visible = False
lbtnEnter.Visible = False
lbtnCancel.Visible False
lbtnDelete.Visible = False

End If

End Sub

Detailed View

When an address is selected, the detailed contact information will be displayed for view or
modification. The function that populates this data is the GetContactDetail function.

Use the following code to create the GetContactDetail function:

Private Sub GetContactDetail (ByVal strID As String)
Dim objConn As SglConnection
Dim objCmd As SglCommand
Dim objReader As SglDataReader
Dim strSQL As String
Dim strConn As String
txtID.Text = strID
strSQL = "SELECT * FROM AddressBook WHERE id=" & strID

strConn = "server=localhost;uid=sa;pwd=;database=addressbook"

objConn = New SglConnection (strConn)
objConn.Open ()

objCmd = New SglCommand (STRSQL, objConn)

objReader = objCmd.ExecuteReader
objReader.Read ()

If Not IsDBNull (objReader.Item("FName")) Then txtFName.Text =
objReader.Item ("FName") Else txtFName.Text = ""

If Not IsDBNull (objReader.Item("MName")) Then txtMName.Text =
objReader.Item("MName") Else txtMName.Text = ""

If Not IsDBNull (objReader.Item("LName")) Then txtLName.Text = _
objReader.Item("LName") Else txtLName.Text = ""

If Not IsDBNull (objReader.Item("NName")) Then txtNName.Text = _
objReader.Item("NName") Else txtNName.Text = ""

If Not IsDBNull (objReader.Item("SpouseName")) Then txtSName.Text =

objReader.Item("SpouseName") Else txtSName.Text = ""

If Not IsDBNull (objReader.Item("Childl")) Then txtChildl.Text = _
objReader.Item("Childl") Else txtChildl.Text = ""

If Not IsDBNull (objReader.Item("Child2")) Then txtChild2.Text = _
objReader.Item("Child2") Else txtChild2.Text = ""

If Not IsDBNull (objReader.Item("Child3")) Then txtChild3.Text = _
objReader.Item("Child3") Else txtChild3.Text = ""

If Not IsDBNull (objReader.Item("Address")) Then txtAddress.Text =

objReader.Item ("Address") Else txtAddress.Text = ""

If Not IsDBNull (objReader.Item("City")) Then txtCity.Text = _
objReader.Item("City") Else txtCity.Text = ""

If Not IsDBNull (objReader.Item("State")) Then txtState.Text = _

objReader.Item("State") Else txtState.Text = ""

If Not IsDBNull(objReader.Item("Zip")) Then txtZip.Text = _
objReader.Item("Zip") Else txtZip.Text = ""
If Not IsDBNull (objReader.Item("HomePhone")) Then

txtHomePhone.Text =
objReader.Item ("HomePhone") Else txtHomePhone.Text = ""
If Not IsDBNull (objReader.Item("CellPhone")) Then
txtCellPhone.Text =
objReader.Item("CellPhone") Else txtCellPhone.Text = ""
If Not IsDBNull (objReader.Item("Email")) Then txtEmail.Text = _
objReader.Item("Email") Else txtEmail.Text = ""
If Not IsDBNull (objReader.Item("Comments")) Then txtComments.Text

objReader.Item("Comments") Else txtComments.Text = ""

objReader.Close ()

Data Access Functions

Now you are going to implement the data access function along with functions for building
insert, update, and delete queries:

Private Sub ExecuteQuery(ByVal strSQL As String)
Dim objConn As SglConnection
Dim objCmd As SglCommand

Dim strConn As String

strConn = "server=localhost;uid=sa;pwd=;database=addressbook"

objConn = New SglConnection (strConn)
objConn.Open ()

objCmd = New SglCommand (strSQL, objConn)
objCmd.ExecuteNonQuery ()

End Sub
Private Sub InsertRecord()

Dim strSQL As String

strSQL = "INSERT AddressBook (FName, MName, LName, "
& "NName, SpouseName, Address, City, State, Zip, HomePhone, "

& "CellPhone, EMail, Comments, Childl, Child2, Child3) " _
& "VALUES ('" & txtFName.Text & "', '" & txtMName.Text

& "', '" g txtLName.Text & "', '" & txtNName.Text B

& "', ' & txtSName.Text & "', '" & txtAddress.Text _

& "', "M & txtCity.Text & "', '" & txtState.Text

& "', "M & txtZip.Text & "', '" & txtHomePhone.Text

& "', '" & txtCellPhone.Text & "', '"" & txtEmail.Text _

& "', '" & txtComments.Text & "', '" & txtChildl.Text _

& "' '"og txtChild2.Text & "', '"" & txtChild3.Text & "')"

ExecuteQuery (strSQL)
End Sub
Private Sub UpdateRecord()

Dim strSQL As String

strSQL = "UPDATE AddressBook SET "
& "FName = '" & txtFName.Text
& "', MName = '" & txtMName.Text
& "', LName = '" & txtLName.Text
& "', NName = '" & txtNName.Text
& "', SpouseName = '" & txtSName.Text
& "', Address = '" & txtAddress.Text
& "', City = '" & txtCity.Text _
& "', State = '" & txtState.Text
& "', Zip = '"" & txtZip.Text _
& "', HomePhone = '" & txtHomePhone.Text
& "', CellPhone = '" & txtCellPhone.Text
& "', EMail = '"" & txtEmail.Text _
& "', Comments = '" & txtComments.Text
& "', Childl = '" & txtChildl.Text _
& "', Child2 = '" & txtChild2.Text _
& "', Child3 = '" & txtChild3.Text _
& "' WHERE ID = " & txtID.Text

ExecuteQuery (strSQL)
End Sub
Private Sub DeleteRecord()
Dim strSQL As String
strSQL = "DELETE FROM AddressBook WHERE ID = " & txtID.Text
ExecuteQuery (strSQL)

Click Events

The following code is for the click events for the New, Edit, Delete, Enter, and Cancel clicks:

Private Sub lbtnNew Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles lbtnNew.Click

SetControlsVisibleTrue ()
SetControlsWritable ()
ResetControls ()

'Need to set focus to the txtFName control.

1blMode.Text = "New"

lbtnNew.Visible = False
lbtnEdit.Visible = False
lbtnEnter.Visible = True
lbtnCancel.Visible = True
lbtnDelete.Visible = False

End Sub
Private Sub lbtnEdit Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles lbtnEdit.Click
SetControlsWritable ()
1blMode.Text = "Edit"
lbtnNew.Visible = False
lbtnEdit.Visible = False
lbtnEnter.Visible = True
lbtnCancel.Visible = True
lbtnDelete.Visible = False
End Sub
Private Sub lbtnDelete Click(ByVal sender As System.Object, ByVal e As
gystem.EventArgs) Handles lbtnDelete.Click

SetControlsVisibleFalse ()

SetControlsReadOnly ()
1blMode.Text = "Deleted"
DeleteRecord()
PopulateAddressBook ()
ResetControls ()
1blMode.Text = "List View"

lbtnNew.Visible = True
lbtnEdit.Visible = False
lbtnEnter.Visible = True
lbtnCancel.Visible True
lbtnDelete.Visible = False

End Sub
Private Sub lbtnEnter Click(ByVal sender As System.Object, ByVal e As
gystem.EventArgs) Handles lbtnEnter.Click
If Page.IsValid Then

SetControlsVisibleFalse ()
SetControlsReadOnly ()

If 1lblMode.Text
If 1blMode.Text

"New" Then InsertRecord()
"Edit" Then UpdateRecord()

PopulateAddressBook ()
ResetControls ()

lbtnNew.Visible = True

lbtnEdit.Visible = False
lbtnEnter.Visible = False
lbtnCancel.Visible = False
1blMode.Text = "List View"
End If
End Sub

Private Sub lbtnCancel Click(ByVal sender As System.Object, ByVal e As

gystem.EventArgs) Handles lbtnCancel.Click
'Complete

SetControlsVisibleFalse ()

ResetControls ()
SetControlsReadOnly ()
1blMode.Text = "Canceled"

lbtnNew.Visible = True
lbtnEdit.Visible = False
lbtnEnter.Visible = False
lbtnCancel.Visible = False
lbtnDelete.Visible = False

End Sub

SmartNavigation

As you learned earlier in this chapter, SmartNavigation allows you to build applications that
seem more like Win32 form applications than a web site.

Add smartNavigation="True’ to the Page declaration of the HTML page. Your end result
should look something like this, except it will all be on a single line:

<%@ Page Language="vb" SmartNavigation="True" AutoEventWireup="false"
Codebehind="AddressBook.aspx.vb" Inherits="AddressBook.AddressBook"%>

Summary

This chapter served only as an introduction that allowed for some hands-on experience. Using
what you learned in Chapter 7, "A Visual Basic .NET Crash Course," Visual Basic .NET and
the hands-on experience that you gained in this chapter, bundled with tools that are available
in Visual Studio .NET should help you get started in building web applications. For a more
in-depth look at ASP.NET, take a look at MSDN articles that are available with Visual Studio
NET and at http://msdn.microsoft.com.

Chapter 9: Promoting Application
Scalability

Overview

Accessing data is fundamental to the information world; however, the techniques for
accessing data can vary depending on an application's specific requirements. Some
applications run on a single machine and access data only on that machine, while others are
distributed and require a data access model to promote scalability.

This chapter will address the technologies available in .NET that promote application
scalability. You'll learn about ADO.NET first, Microsoft's classes for accessing data for NET
applications. Then you'll look at SQL Server 2000 and how to extend the scalability of an
application using stored procedures. Finally you'll examine how XML can be used with SQL
Server 2000 stored procedures to apply an additional layer of scalability.

The sample code in this chapter is dependent on your completion of the AddressBook sample
of Chapter 8, "ASP.NET"; however, you will find this sample application in the Chapter 8
folder of your CD-ROM.

ADO.NET: An Introduction

ADO.NET represents the classes and methods made available by the .NET framework when
accessing data. ADO.NET provides all the functionality you need to connect to, retrieve, and
modify a data source. ADO.NET's functionality is divided into a set of classes that perform
specific data services as follows:

o Connection Object: Establishes a connection to a data source.

o Command Object: Executes commands against the data source connected to by the
connection object.

o DataReader Object: Returns data in a read-only/forward-only fashion.

o DataAdapter Object: Populates a DataSet with the fill method and can resolve
changes to the DataSet back to the data source.

o DataSet Object: Holds data in a relational data structure. The DataSet achieves this
through collections of objects that define relational data. These collections include
table, column, row, and relationship objects.

Probably the most significant difference between ADO.NET's and its predecessor, ADO 2.6,
is the plumbing. ADO 2.6 is based on classic COM technology that requires all components
using it to enforce binary compatibility. For components to take advantage of ADO.NET they
need only understand XML, which is leveraged by ADO.NET to define its data schema, as
well as the format used for the storage and transmission of data. Any component that
understands XML can receive data from ADO.NET and ADO.NET can understand data
transmitted by other platforms as XML.

This separation of data access functionality in ADO.NET allows for data manipulation of the
returned DataSet while not actually connecting to the data source. Not only can a DataSet
object work independently of a connection, it has no knowledge of a connections existence.

The concept will be better explained later in this chapter. Classic ADO could work with
record sets independently of a connection; however, this is not the default configuration.
Classic ADO 2.6 is a connected model.

The advantage of working with disconnected data is scalability. More concurrent users are
able to use an application written in ADO.NET because of its disconnected nature requires
less database resources and a reduction in the number of concurrent connections to the
database. One scalability killer of the past has been an application's need to remain connected
to the data source. Database connections are expensive resources to use, in terms of client and
server memory, processing time and network usage.

Performance is another benefit of ADO.NET. Classic ADO converted all data to and from a
variant data type. ADO.NET understands how to support data in its original data type and
does not require the overhead of data type conversion.

Implementing ADO.NET

Like everything else in the .NET Framework, you must either import the appropriate
namespaces or use the fully qualified name of the class you want to create. For example, a
fully qualified name of the SqlCommand class is System.Data.SqlClient.SqlCommand while
the short name, if the System.Data.SQLClient namespace is imported, is SqlCommand.

The following are the namespaces used to access ADO.NET:

e System.Data: Holds ADO.NET data components.

e System.Data.OleDb: Holds ADO.NET data classes for the OleDb .NET data
provider.

e System.Data.SqlClient: Holds ADO.NET data classes for Microsoft SQL Server 7.0
or later. These classes access the Microsoft SQL Server TDS (Tabular Data Stream),
thus removing a complete layer of data abstraction and COM interoperability, and
greatly improving performance. COM interoperability is used with OleDb because
OleDb drivers are COM based.

o System.Data.odbc: Holds ADO.NET classes for using ODBC.

Connection Object

The Connection object is a class provided by the .NET Framework that connects the
requesting application to the data source. There are currently two flavors of the connection
object with a beta for Oracle on the way.

The 0lebbConnection class, found in the System.Data.0leDb namespace, supports all
OleDb Data Providers. Use the following imports statement and OleDBConnection object
when using the OleDb Data providers.

Imports System.Data.OleDb
Public Class MyClass
Dim objConn As OleDbConnection

You can also use the class's fully qualified name rather than importing the namespace. (You
can access any class in the .NET Framework this way to make your code more readable,
especially when classes with the same name exist.)

Public Class My Class
Dim objConn As System.Data.OleDb.OleDbConnection

Setting OleDbConnection Properties

The 0lebbConnection object's properties can be set or retrieved in code, but they are usually
set these through a string passed to the Connectionstring property. Here is an example of a
connection string for the OleDbConnection.ConnectionString property. (This connection
string will connect you to the AddressBook database we created in Chapter 8, "ASP.NET.")

Dim strConn As String
strConn = "Provider=SQLOLEDB;Data Source=localhost;" & _
"Initial Catalog=AddressBook;User Id=sa;Pwd=;"

The connection object's required properties are now stored in the strConn string. While there
are several other connection properties, you'll learn about the required ones:

e Provider: Name of the OleDb data provider, which is a fancy way of saying database
driver.

o Data Source: This is the name of the server's name where the database resides. This
could just as easily be the IP address of the database server.

o Initial Catalog: This is the name of the database you want to connect to.

e User ID: The User Id for the database you wish to connect with.

e Pwd or Password: The user's password of the User Id provided.

Once you set all the required properties you can open the connection. Following are few ways
to build a connection object, then open a database connection.

Building a Connection Object
Let's build a quick and dirty application that won't actually do anything interesting. You'll
simply open a database connection and then close it. You'll also use the connection object to
extract a database schema.

1. Create a new Visual Basic windows application named "Connection Objects".

2. Add two buttons and a data grid control onto the form. Set the properties of each
control, as listed in Table 9-1.

10.
11.
12.
13.
14.

15.

16.

17.
18.
19.
20.
21.
22.

23.

24.

25.
26.
27.
28.
29.

30.

31.

32.
33.
34.
35.
36.

Table 9-1: Control Properties for Connection Objects

Control Property Value
Button ID btnConnections
Text Connection Objects
Button ID btnGetOleDbSchemaTable
Text GetOleDbSchemaTable
DataGrid ID DataGrid1

Add the "Imports System.Data.OleDb" statement before the "Public Class Form1
statement" of the Windows Form.

Double-click the btnConnections button and build the connection string for each of
our connection examples:

' These are only a few options for creating and opening a
connection
'object.
Dim strConn As String
strConn = "Provider=SQLOLEDB;Data Source=localhost; & _
"Initial Catalog=AddressBook;User Id=sa;Pwd=;"

The first connection example creates a new connection by first declaring an object as
type 0OleDbConnection then instantiating it with the connection string:

' Option 1

Dim objConn As OleDbConnection
objConn = New OleDbConnection (strConn)
objConn.Open ()

objConn.Close ()

Now comment out option 1 and implement option two with the following code to
declare and instantiate our connection in a single statement:

' Option 2

Dim objConn As OleDbConnection = New OleDbConnection (strConn)
objConn.Open ()

objConn.Close ()

Next, comment out option 2 and add option 3. (There is no significant difference
between option 2 and 3 except option 3 uses the least code possible.)

'Option 3

Dim objConn As New OleDbConnection (strConn)
objConn.Open ()

objConn.Close ()

37. You won't spend any more time on the connection object, but to give you a quick taste
of features you may want to look into, add the following code to the
btnGetOleDbSchemaTable button's click event. Next, double-click the
btnGetOleDbSchemaTable Click button and place the following code into it. This
will extract data about the add databases, tables, columns, or procedures depending on
which option you leave uncommented:

B e e e e e e e e e e e ettt e e e e e e e

39. ' These are only a few options for creating and opening a
connection

40. 'object.

41. Dim strConn As String

42. strConn = "Provider=SQLOLEDB;Data Source=localhost;Initial " & _

43. "Catalog=AddressBook;User Id=sa;Pwd=;"

44 Dim objConn As New OleDbConnection (strConn)

45. Dim objDataTable As DataTable

46. Dim objDataSet As DataSet = New DataSet ()

47 .

48. objConn.Open ()

49,

50. 'Getting Database Schema

51. objDataTable = objConn.GetOleDbSchemaTable (

52. 'OleDbSchemaGuid.Catalogs, Nothing)

53. 'objDataTable = objConn.GetOleDbSchemaTable(

54. '0OleDbSchemaGuid.Columns, Nothing)

55. 'objDataTable = objConn.GetOleDbSchemaTable(

56. 'OleDbSchemaGuid. Indexes, Nothing)

57. 'objbDataTable = objConn.GetOleDbSchemaTable(

58. '0OleDbSchemaGuid.Procedures,
Nothing)

59. 'objDataTable = objConn.GetOleDbSchemaTable(

60. 'OleDbSchemaGuid.Tables, Nothing)

61.

62. objDataSet.Tables.Add (objDataTable)

63. DataGridl.DataSource = objDataSet

64.

65. objConn.Close ()

BB e i et e ettt e e e e et ettt et e e

67. Now run the application.
SQLConnection

The sgLConnection object works very much like the 01ebbConnection object except that it
requires a few minor changes. The namespace for referencing the SQL Connection object is
System.Data.SglClient. (When building the connection string, you don't need to specify
the provider since the data provider we are using can only work with SQL Server 7 and
above.) Your connection string might look something like this:

Both the OleDb and SQL data providers can be used for accessing SQL Server 7 and above;
however, as mentioned earlier, the SQL-specific provider has more direct access to SQL

Server and therefore gives much better performance. If you need to access any other data
source, use the OleDb provider or a data provider specific to the desired data source.

Command Object

The command object is used for executing commands against a data source. Like the
connection object it comes in two flavors: The sq1Command and 0leDbCommand objects,
which can be accessed through the system.Data.SglClient and System.Data.0leDb
namespaces respectively. The following object declarations use the fully qualified names of
each class, showing their respective locations in the .NET Framework hierarchy:

Dim objSglCommand As System.Data.SglClient.SglCommand
Dim objOleDbCommand as System.Data.OleDb.OleDbCommand

As with the connection object you can also import the appropriate namespace and use only the
class name to declare the object:

Imports System.Data.SglClient.SglCommand
Public Class Forml
Dim objSglCommand as SglCommand

The command object can be leveraged to perform different tasks. For example, the
CommandType property of the command object determines the type of data access command to
be performed. You set the CommandType property with the CommandType enumerator provided
by the .NET Framework. Available CommandType enumerations include:

CommandType.StoredProcedure
CommandType.TableDirect
CommandType.Text

Building a Pass Through Query

Here's an example of how to build and call a pass through query. While this is not how you
should build an application in the real world, it is a way to examine the command object and
possibly build prototype applications. (We'll discuss this method in more detail as the chapter
continues.)

' Create a string to hold the connection string then us it
' to instantiate the objConn connection class.
Dim strConn as string

strConn = "Provider=SQLOLEDB;Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)

' Use the connection object to instantiation of the command object.
Dim objCmd As New SglCommand ("SELECT * FROM AddressBook")
objCmd.CommandType = CommandType.Text

' Open the connection.
objConn.Open ()

' Run the ExecuteReader method of the command object
objCmd.ExecuteReader (CommandBehavior.CloseConnection)

' Close the connection.
objConn.Close ()

Notice that the command type used was CommandType.Text. This is an enumerated value
used to determine which type of command will be utilized. Each of these CommanType types
will be discussed in more detail as well as demonstrated in code:

e CommandType.StoredProcedure: Determines that a stored procedure will be
executed. The stored procedure name and parameters, if required, must be supplied.

e CommandType.TableDirect: Determines that all records of a given table will be
returned.

e CommandType.Text: Allows the use of pass through like queries to be passed.

You will find this example quite a bit more useful than the previous example because you will
be doing much more than simply connecting to a data source. In fact, to retrieve and modify
data, all you need to do is to combine the connection and command objects (although you
probably don't want to rely on the functionality that is provided by using only these two
objects alone). You will also want to leverage the use of the DataReader object to read the
data you've retrieved.

Note Don't become completely dependent on limiting the number of ADO.NET classes you
master. The DataAdapter and DataSet objects are very powerful and can significantly
reduce your development time. Learn how to use these objects but remind yourself that
just because you can do a thing doesn't mean you should. Learn the appropriate
scenarios in which you apply to different data classes. Must of this is covered in the
remainer of this chapter.

To build the pass through query, follow these steps:

1. Create a new Visual Basic Windows Application project named "Command Objects"
and apply the following controls and property settings. Use the controls that are listed
in Table 9-2 to build the form.

Table 9-2: Control Properties for Command Objects
Control Property Value

Label

Label

Button

Button

Button

Button

Button

Button

Button

Button

ComboBox

DataGrid

ID
Text
ID
Text
ID
Text
ID
Text
ID
Text
ID
Text
ID
Text
ID
Text
ID
Text
ID
Text
ID
Text
ID

Labell

Command Types:
Label2

Execution Methods:
btnCommandObjects
Command Objects
btnText
CommandType.Text
btnTableDirect
CommandType.TableDirect
btnStoredProcedure
CommandType.StoredProcedure
btnExecuteNonQuery
ExecuteNonQuery
btnExecuteReader
ExecuteReader
btnExecuteScalar
ExecuteScalar
btnExecuteXMLReader
ExecuteXMLReader
ComboBox1

DataGrid1

5. Place our imports statement before the Form1 class declaration:

Covrmard Obeciz

Commard Tyoe: E pecution Met o

CommndlipeTeos | Esecustiorlen | Emcusiesy |
Comrundlype | abielived | Emcubefisads | EvecuinlilAuade |
Cormardlype Sorecioze | | =

Figure 9-1: Your command object example should look like this.

Command Objects Button

While this doesn't necessarily demonstrate much more than how to properly declare and
instantiate the command object, go ahead and place the following code behind the "Command
Objects" button:

Dim strConn as string

strConn = " Data Source=localhost;Initial " &
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)

'Instantiation of the command object.
Dim objCmd As New SglCommand ("SELECT * FROM AddressBook")
objCmd.CommandType = CommandType.Text

objConn.Open ()

objConn.Close ()

CommandType.Text

The text command type allows you to pass queries through to the data source. This is most
often used when performing in-line database calls. Of course, this is not looked upon as a best
practice when developing multitiered scalable applications. In fact, this is one of the best
ways to eliminate scalability even when you are using compiled code supplied by ASP.NET.

Place the following code behind the "CommandType.Text" button:

Dim strConn as string

strConn = "Data Source=localhost;Initial " &
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim strSQL As String = "SELECT FName, MName, LName, " &

"Email FROM AddressBook"

Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()

Dim objDataAdapter As New SglDataAdapter ()
Dim objDataSet As New DataSet ()

'CommandType.Text
objCmd.CommandType = CommandType.Text
objCmd.CommandText sStrSQL

Try
objDataAdapter.SelectCommand = objCmd
objDataAdapter.SelectCommand.Connection = objConn
objConn.Close ()
objDataAdapter.Fill (objDataSet, "AddressBook")

DataGridl.SetDataBinding (objDataSet, "AddressBook")

Catch ex As Exception

MessageBox.Show (ex.ToString)
End Try

CommandType.TableDirect:

The TableDirect command type pulls all data from a given table. Notice that in this example
you are accessing SQL Server with OleDb while the previous examples used the
System.Data.SqlClient namespace. This is because the SqlClient classes do not support
TableDirect. Rather than importing the appropriate namespace, you are going to explicitly
declare your ADO.NET objects by using the fully qualified path of the class. Also, notice that
the connection string is a little different. Because you are using OleDb, you must provide the
"Provider":

Dim strConn as string
strConn = "Provider=SQLOLEDB;Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New System.Data.OleDb.OleDbConnection (strConn)
Dim objCmd As New System.Data.OleDb.OleDbCommand ()
Dim objDataAdapter As New System.Data.OleDb.OleDbDataAdapter ()
Dim objDataSet As New DataSet ()

'CommandType.TableDirect
objCmd.CommandType = CommandType.TableDirect
objCmd.CommandText = "AddressBook"

Try
objDataAdapter.SelectCommand = objCmd
objDataAdapter.SelectCommand.Connection = objConn
objDataAdapter.Fill (objDataSet, "AddressBook")

DataGridl.SetDataBinding (objDataSet, "AddressBook")

Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

CommandType.StoredProcedure

Stored procedures that are provided by SQL Server allow for the most efficient method of
data access currently available. Before you can build your stored procedure example, you
must have a stored procedure to execute.

Create the stored procedure by following these steps:

1. Open SQL Server Enterprise Manager.

2. Select the AddressBook database and then open Query Analyzer from the Tools menu.

3. Select open from the file menu, navigate to the "Ch9 Examples" directory on the CD-
ROM, select the "ab GetContactInfo ssp.sgl" file, and press Open.

4. Execute the script by selecting Execute from the Query menu item.

Running the script will drop any stored procedure in the AddressBook database with the same
name, then continue to recreate the stored procedure based on the script. The stored procedure
will accept one parameter of @FName, allowing you to return all records with whatever first
name you specify.

Add the following code to the "btnstoredpProcedure” click event. This code will call the
"ab GetContactInfo ssp.sqgl" stored procedure passing in the desired first name. Of
course, you can create a stored procedure to accept any number of parameters and populate
those parameters based on user controls. You simply want to demonstrate how to use the
stored procedure itself. Your example will search for any records whose first name is
"Tamarah". For you toget a result back, you will need to replace this name with one in your
AddressBook database:

Dim strConn as string
strConn = "Data Source=localhost;Initial " & _

"Catalog=AddressBook;User Id=sa;Pwd=;"

Dim objConn As New SglConnection (strConn)

Dim objCmd As New SglCommand ()

Dim objDataAdapter As New SglDataAdapter ()

Dim objDataSet As New DataSet ()

Dim objParamFName As New SglParameter ("@FName",
SglDbType.VarChar, 20)

objParamFName.Direction = ParameterDirection.Input

objParamFName.Value = "Robert"

'CommandType.StoredProcedure

objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab GetContactInfo ssp"
objCmd.Parameters.Add (objParamFName)

objCmd.Connection = objConn

Try
objDataAdapter.SelectCommand = objCmd
objDataAdapter.Fill (objDataSet, "AddressBook")

DataGridl.SetDataBinding (objDataSet, "AddressBook")

Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

Command Object Execution Methods

As you have discovered, there are a few different command types that can significantly alter
what data is returned, if any, and the performance of your data access components. The
method of execution that you use is as important as the type of command that you choose.
The command object provides four methods for executing commands, each with their own
characteristics in terms of the data they return and the type of command they process:

o ExecuteNonQuery: This method executes a command while disregarding any
potential returned data. This method is used for executing statements such as Insert,

Update, and Delete. The number of rows is affected by the executed command
returned.

o ExecuteReader: This method is used to return read-only or forward-only data
records. This can easily be leveraged for populating lists, collections, or list type
functions.

o ExecuteScalar: This method returns only a single value. All other data that could
potentially be returned is ignored. This is helpful when returning a count of records or
some calculation returned with a single value.

o ExecuteXMLReader: This method returns all data in XML format; however, the data
must be requested in XML format for the ExecuteXMLReader method to work (XML
AUTO or XML AUTO, ELEMENTS).

You will integrate each of these execution methods into the command objects sample
application.

ExecuteNonQuery

You will use the ExecuteNonQuery execution method to insert the first and last names of a
contact, "John Smith". After executing this command, click the
"CommandType.TableDirect" button to refresh the data grid. You should see the new "John
Smith" contact.

Place the following code behind the "ExecuteNonguery" click event:

Dim strConn as string
strConn = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)
Dim strSQL As String = "INSERT AddressBook (FName, LName)" &

"Values ('John', 'Smith'")"
objConn.Open ()

Dim objCmd As New SglCommand (strSQL, objConn)
Dim intResult
intResult = objCmd.ExecuteNonQuery ()

' If you want to see the number of rows affected by the

'ExecuteNonQuery execution method simply declare an
'integer and set this statement equal to the method call
'intResult = objCmd.ExecuteNonQuery ()

ExecuteReader

This example will populate a ComboBox control with a DataReader object that you will
populate using the ExecuteReader execution method. Place the following code behind the
"ptnExecuteReader" click event:

Dim strConn as string

strConn = "Data Source=localhost;Initial " &
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim strSQL As String = "SELECT FName FROM AddressBook"

Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()

objCmd.CommandType = CommandType.Text
objCmd.CommandText = strSQL
objCmd.Connection = objConn

ComboBoxl.Items.Clear ()

Try
objConn.Open ()
Dim objReader As SglDataReader = _
objCmd.ExecuteReader (CommandBehavior.CloseConnection)

Do While objReader.Read
ComboBox1.Items.Add (objReader (0))
Loop

Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

ExecuteScalar

This example will return the number of records that are available in the AddressBook table.
Placing the following code in the "btnExecuteScalar" click event will select the number of
records in the AddressBook table and display the results on the button itself:

Dim strConn as string
strConn = "Data Source=localhost;Initial " &
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)
Dim strSQL As String = "SELECT COUNT (*) FROM AddressBook"

objConn.Open ()

Dim objCmd As New SglCommand (strSQL, objConn)
Dim intResult

intResult = objCmd.ExecuteScalar

Click on the "ExecuteNonQuery" button to insert another contact then press the
"ExecuteScalar" button again. You will see that the number of records increases by one.

ExecuteXmlIReader

This example will execute a query that returns XML data using the "FOR XML AUTO,
ELEMENTS" statement. The returned XML data will be returned to a message box. Place the
following code behind the "btnExecuteXMLReader" click event:

Dim strConn as string
strConn = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)
Dim strSQL As String = "SELECT FName, LName, Email" &
" FROM AddressBook FOR XML AUTO, ELEMENTS"

objConn.Open ()

Dim objCmd As New SglCommand (strSQL, objConn)
Dim strResult As String
strResult = objCmd.ExecuteScalar

MessageBox.Show (strResult)

DataReader Object

The DataReader object is an ADO.NET object that is designed to retrieve data in a forward-
only fashion. The DataReader object is distinguished from the DataSet object in that the
DataReader does not actually hold or maintain a record set, but iterates through each record,
loading only the current record into memory. When the DataReader moves to the next record,
the previous record is removed from memory.

The DataReader object can be declared from one of the following namespaces depending on
the data provider you have chosen:

e System.Data.OleDb
e System.Data.SqlClient
e System.Data.odbc

The DataReader object is instantiated by the ExecuteReader of the Command object:

The only objects that are required to access data with the DataReader object are the
connection and command objects and, of course, the DataReader object as shown in Figure 9-
2.

Connected Layer

Data Provider
(DataReader)
(Command “}

(Connection)

Data Source

Figure 9-2: The DataReader object within the ADO.NET model.
DataReader Object Example

Our DataReader object example really doesn't do much except demonstrate some basic uses
of the DataReader object. It will not have a full-blown user interface. In fact, one of the
command buttons sends its output to the Visual Studio .NET Output window:

1. Create a new Visual Basic .NET windows application and name it "DataReader
Objects".

2. Place the following imports statement before the Form1 class declaration:

R

6. Drag-and-drop three command buttons and a single combo box onto the form and set
the properties that are listed in Table 9-3.

Table 9-3: Control Properties for DataReader Objects

Control Property Value
Button ID btnDRInitialize

Text DataReader Initialization
Button ID btnDRComboBox

Text Populate a Combo Box with DR

Button ID btnDataType

Table 9-3: Control Properties for DataReader Objects

Control Property Value

Text Explicitly requesting data and type.
ComboBox ID ComboBox1

Text

™ Form1

D ataR eader Initialization

Populate a Combo Box with DR

E =zplicitly requesting data type.

Figure 9-3: The DataReader sample application.

Initializing the DataReader Object

Place the following code into the "otnDRInitialize" click event. This will simply
demonstrate how to initialize the DataReader object:

Dim strConn as string

strConn = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim strSQL As String = "SELECT FName FROM AddressBook"

Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()
objCmd.CommandType = CommandType.Text
objCmd.CommandText = strSQL
objCmd.Connection = objConn

objConn.Open ()

Dim objReader As SglDataReader = _
objCmd.ExecuteReader (CommandBehavior.CloseConnection)

The DataReader object makes use of an open connection and, in fact, cannot operate without
it. After the connection is closed, you may access properties and output parameters; however,
you cannot access data at all. The DataReader is designed for high-performance but should be

used appropriately, otherwise the DataReader can actually hinder performance. If a
connection is held open any longer than absolutely necessary, server memory and network
resources are wasted and could possibly impact the performance of other applications that
share the same network or database resources.

The DataReader is not ideal for all data access scenarios. You do not want to use the
DataReader object when accessing a large number of records because the connection will be
held open for a long period of time. Also, if additional filtering, sorting, and searching are
required, the DataReader should not be used. One reason is that the DataReader reads data as
it comes and cannot sort the returning data. Another reason is while filtering can be achieved
programmatically and searching can be achieved with multiple data scans, using the
DataReader will waste unnecessary server and network resources when other ADO.NET
objects, such as the DataSet object, are designed for these scenarios.

While the DataReader object is not ideal for all situations, it is designed for low overhead and
high-performance when accessing a relatively small number of records. Populating drop-
down boxes or any list, collection, or list control are all ideal situations for using the
DataReader. Often an application requires only a row of data, similar to the sample
application, AddressBook, where detailed information about a specific contact is displayed.
This is also an ideal place to take advantage of the high performing nature of the DataReader
object.

Another way to take advantage of the DataReader object is when populating multiple lists.
The DataReader has the ability to read multiple result sets from a single database call. To
learn more about accessing multiple result sets with the DataReader object, refer to MSDN
online. The ability to access multiple result sets is huge because the connection object only
needs to be opened once and all metadata for any given page can be stored in a single stored
procedure, promoting code organization. A single stored procedure can be related to a given
page for application metadata.

Populate ComboBox Example

The following code is an example of how you might use a DataReader to populate a combo
box.

Insert the code into the "btnDRComboBox" click event:

Dim strConn as string

strConn = "Data Source=localhost;Initial " &
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim strSQL As String = "SELECT FName FROM AddressBook"

Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()

objCmd.CommandType = CommandType.Text
objCmd.CommandText StrSQL
objCmd.Connection = objConn

ComboBoxl.Items.Clear ()

Try

objConn.Open ()
Dim objReader As SglDataReader = _
objCmd.ExecuteReader (CommandBehavior.CloseConnection)

Do While objReader.Read
ComboBox1.Items.Add (objReader (0))
Loop

Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

DataReader Performance Tips

e Don't use the DataReader object for large sets of data.

e Open the connection just before it is needed and close the connection as soon as
possible.

o Use multiple result sets whenever possible; for example, when you are populating
multiple combo boxes or drop down lists.

o Use the ordinal rather than the string name of a column when retrieving values. The
DataReader must call an additional method to locate the correct ordinal of the column
if only the column's name is provided.

o The DataReader object allows you to specify the data type of the data you are
requesting. This increases performance by reducing unnecessary data conversions by
the DataReader.

To demonstrate the use of this feature place the following code into the "btnbataType" click
event. The result of the DataReader will be displayed in the Output window. As a quick and
dirty example, this example will select the 1d, FName, and LName columns and access their
data by requesting the data from the DataReader in their native data types. (For more
information on OleDb and SQL Server data types, refer to MSDN online.)

Dim strConn as string

strConn = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim strSQL As String = "SELECT id, FName, LName FROM AddressBook"

Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()

objCmd.CommandType = CommandType.Text
objCmd.CommandText = strSQL
objCmd.Connection = objConn

Try
objConn.Open ()
Dim objReader As SglDataReader = _
objCmd.ExecuteReader (CommandBehavior.CloseConnection)

While objReader.Read ()
Console.WriteLine ((objReader.GetInt32(0) & ", " &
objReader.GetString (1)) & ", " &
objReader.GetString(2))
End While

Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

Second Look at the AddressBook Example

Open up your AddressBook sample application. Take a look at the "GetContactDetail"
function. Notice that you are using the DataReader. Two methods that will improve the read
performance of your contacts detail information is to first request each data item explicitly by
its native data type, and second, referencing each item by its ordinal. All of the data types are
string so you can use "GetString":

For example:
If Not IsDBNull (objReader.Item(l)) Then txtFName.Text =
objReader.GetString(l) Else txtFName.Text = ""

DataAdapter Object

The DataAdapter object is used to populate the DataSet object with data and can be used to
resolve changes to a DataSet back to the database.

The DataSet object, discussed later in this chapter, is essentially a disconnected database
object, whose data connectivity is through the DataAdapter. The benefit of disconnecting the
DataSet object from the data source becomes clear once you begin to use multiple types of
data sources for data maintained and related to within the same DataSet object. This would
not be possible if the DataSet object connected to a data source.

DataAdapter Object Initialization

You are going to continue using the SQL Server data provider; however, you may choose to
utilize the OleDb data provider. The fully qualified names of the DataAdapter objects are:

System.Data.OleDb.OleDbDataAdapter
System.Data.SglClient.SglDataAdapter

The DataAdapter depends on the Command object which, in turn, depends on the Connection
object (Figure 9-4).

Disconnected Layer

(DataSel ‘

e ey
Connected Layer

Data Provider
{; DataAdapter E\I
(Command)
L y
f_ Connection :]
. .

Data Saurce

Figure 9-4: The DataAdapter object within the ADO.NET model.

The following code is not a working example of how to use the DataAdapter object; however,
the objects demonstrated here are all required in order to use the DataAdapter. This example
simply shows how to initialize the DataAdapter using the command object:

Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()

Dim objDataAdapter.SelectCommand = objCmd
objCmd.Connection = objConn
objDataAdapter.SelectCommand = objCmd

Another way to instantiate the DataAdapter is to instantiate it with no parameters and then set
each individual property. The connection and command objects are already created:

Dim objDataAdapter As New SglDataAdapter
objDataAdapter.SelectCommand = objCmd
objDataAdapter.SelectCommand.Connection = objConn

Another way to instantiate a DataAdapter object is by providing string data in place of what
the connection and command objects would provide:

Dim objDataAdapter As New SglDataAdapter(_
"SELECT * FROM Addressbook",
"Data Source=localhost;Initial Catalog=AddressBook;" & _
"User Id=sa;Pwd=;"

DataAdapter Object Example

All we are going to do with this project is fill a DataSet using the DataAdapter and use the
DataSet as the source for a DataGrid:

1. Create a new Visual Basic .NET windows application and name it "Dataadapter
Objects".

2. Drag-and-drop one command button and a single DataGrid onto the form and set the
properties that are listed in Table 9-4.

Table 9-4: Control Properties for DataAdapter Objects
Control Property Value

Button ID btnDAExample
Text Using the DataAdapter object to populate a DataSet object
DataGrid ID DataGrid1

Everything that you need to populate the DataGrid is in the click event of the
"btnDAExample" button:

1. Add the imports statement for SQL Server data objects:

7. Dim strConn as string

8. strConn = "Data Source=localhost;Initial " &
9. "Catalog=AddressBook;User Id=sa;Pwd=;"

10. Dim objConn As New SglConnection (strConn)

11. Dim objCmd As New SglCommand ()

12. Dim objDataAdapter As New SglDataAdapter ()

13. Dim objDataSet As New DataSet ()

14

16. objCmd.CommandType = CommandType.StoredProcedure

17. objCmd.CommandText = "ab GetAllContactInfo ssp"

18.

19. objCmd.Connection = objConn

20.

21. Try

22.

23. objDataAdapter.SelectCommand = objCmd

24. objDataAdapter.Fill (objDataSet, "AddressBook")

25.

26. DataGridl.SetDataBinding (objDataSet, "AddressBook")
27. Catch ex As Exception

28.

29. MessageBox.Show (ex.ToString)

30. End Try
R

DataAdapter Fill Method

The Fill method of the pDataAdapter is used to fill a DataSet table with a set of data. The Fill
method, however, works in coordination with the SelectCommand property.

From your earlier example, you can see how the DataAdapter fills the "AddressBook" table of
the DataSet:

objDataAdapter.SelectCommand = objCmd
objDataAdapter.Fill (objDataSet, "AddressBook")

In this case, the first parameter holds the name of the DataSet object that is populated and the
second parameter is the name of the DataTable object that receives the data. The Fill method
is overloaded, so feel free to use the signature that best meets your needs.

The DataAdapter also has the capability to read and write XML data for the DataSet object.
You will learn about this in more detail when the DataSet object is discussed in the next
section.

Resolving Changes

The DataAdapter object provides facilities for resolving changes back to the data source.
These features are not covered here; however, you may want to take a look at the
InsertCommand, UpdateCommand, and DeleteCommand properties of the DataAdapter.
Approach these features with caution as they do not easily promote scalability and can be
misused easily. Remember that as you include additional abstraction and automation, as
provided by these features, you also reduce performance and scalability.

DataSet Object

As shown previously in Table 9-4, the DataSet object represents the disconnected layer of
ADO.NET. More importantly, it represents data in a relational model. Don't mistake the

DataSet for a record set because while a DataSet object is similar to the classic ADO data
shape, it more resembles relational data.

The DataSet object holds a collection of objects such as the DataTable, DataColumn,
DataRow, and DataRelation objects. When they are combined, an accurate representation of
relational data can be created, persisted, and transmitted using the DataSet objects.

There are specific advantages of using a DataSet to store relational data. In situations in which
a client application will use data from several database tables, the DataSet object can persist
data on the client, reducing the number of network calls required to satisfy the client
application's needs. Another important and probably more significant advantage of the
DataSet object is the ability to pull data from multiple sources and then relate that data in
memory much in the same way a database relates tables. This can be, in many cases, the only
way to successfully relate incompatible data sources.

Another advantage is the ability to work with XML. XML data can be used to fill a DataSet
object and XML data can be easily extracted from a DataSet. In fact, when a DataSet object is
passed between layers or transmitted across the Internet, what is actually transmitted is the
XML representation of the DataSet. This promotes cross-platform independence as .NET
applications can freely communicate with applications that understand XML.

Quick Look at the AddressBook

The AddressBook application used a DataSet object and DataTable to bind to the DataGrid
control. In your AddressBook code, these are the objects that are used:

Dim objConn As SglConnection

Dim objCmd As SglCommand

Dim objDataAdapter As New SglDataAdapter ()
Dim objDataSet As New DataSet ()

Dim strSQL As String
Dim strConn As String

The objects that are required for using the Fill method to populate DataSet objects are the
connection, command, DataAdapter, and DataSet objects (Figure 9-5).

Disconnected Layer

(DataSet)

|
Connected Layer

Data Provider
C DataAdapter j
(“ Command i
C Connection)

Data Source

Figure 9-5: The DataSet object within the ADO.NET model.

Once you have declared all of your objects, you can populate your connection and SQL
strings and then open the connection:

strSQL = "SELECT id, FName + ' ' + MName + ' ' + LName" & _
" as [Name], NName,"
strSQL += " Email FROM AddressBook"
strConn = "server=localhost;uid=sa;pwd=;database=addressbook"

objConn = New SglConnection (strConn)
objConn.Open ()

Notice the next couple lines. Here you are telling the DataAdapter that it is selecting data and
passing in our command object. From here, the DataAdapter has everything it needs to
populate a DataSet table using the Fill method. The first parameter is the DataSet object and
the second parameter is the name of the DataTable object we wish to fill:

objDataAdapter.SelectCommand = objCmd
objDataAdapter.Fill (objDataSet, "AddressBook")

If you think that was easy, take a look at the last two lines of code. Binding the DataSet
objects to a DataGrid control is a two-step process. First, set the DataSet object as the
DataGrid source, then use the DataBind method to bind the data:

DataGridAddressList.DataSource = objDataSet
DataGridAddressList.DataBind()

DataSet Object Example

This example of the DataSet object is a bit more complicated. You will be using objects that
are outside the scope of this book. In this example, you will take data from two different data
sources, relate them in memory, then display the results, and finally export the resulting
relationship as XML:

1. Create a new Visual Basic .NET windows application and name it "DataSet Objects".
2. Drag-and-drop four command Buttons, one DataGrid, and one TextBox onto the form
and set the properties that are listed in Table 9-5.

Table 9-5: Control Properties for DataSet Objects

Control Property Value
Button ID btnBuildDataSetFromExcel
Text Build DataSet From Excel
Button ID btnDataSetFromSQL
Text Build DataSet from SQL Server
Button ID btnBuildDataRelationship
Text Build Data Relationship
Button ID btnExtractXML
Text Extract XML from Related Data
DataGrid ID DataGrid1
TextBox ID TextBox1
Multiline True

Your application should look something like Figure 9-6.

[Gudbmsietvombsed | SuliDasSabon$ilievs | BudDosRsweshe |

Entiact XL bom Fieksizd Data |

Figure 9-6: The DataSet.

Now you need to build an Excel file. Copy the Excel file from the "Ch9 Examples" directory
from the website for this book a http://www.nostarch.com/vsdotnet.htm to anywhere on your
hard drive. Open the Excel file and modify it so that the data in the Excel file relates to the
data in your AddressBook.

First Column

The first column must be numbered incrementally, beginning with 1.

Second Column

The second column is the important one. You'll need to open up SQL Server Enterprise
Manager and view the data of the AddressBook table to determine what value to store in this
column. The Excel document will actually hold notes about contacts in your AddressBook.
The Id column of the AddressBook table is related to the AddressBook Id column of the
Excel document.

Notice that the AddressBook Id column has 1 in Column B Cell 2 and also a 1 in Column B
Cell 3. Both of these columns relate to the first record in the image of the AddressBook table
on the left. Go ahead and look at your data and add notes to your Excel document.

i
i

[l [i) Ty 21 B - |

sl Tk Cimand el ahvist widesil
L Sl Iy S0 AL L i
CPadky L] e E85 Ha Spir Jore

YHERFRRNGO T ERENN

“oggs
i

[af) | .'II

Figure 9-7: The SQL Server Enterprise Manager view of data.
I R o)
B] D [& fes pewt Fgra [k Qe jniow hep = 1 "'.JE?

S0 &R 7w = . W EFEEE R R ... F
a2 - £ |

|] G 3] E T T 1 ol
1 [kl AddwiaDoo | Hotes —
1 Blch i @ pratiy micw guy
1 Blob dige Temarsh
4 | 2 Torrarsh i3 i reorested n Bod
4 2 Ok, mhe duga Bob s

CRIOIC W E ==y £ | o

Figure 9-8
Third Column

Go ahead and place your comments in the third column.

Building a DataSet Table from Excel

Place the following code behind the "otnBuildbataSetFromExcel" click event. This will
access your Excel document as if it were a database and populate the DataSet. From that
point, the client application has no idea where the data came from, only that is exists in a
format it understands. You will need to change the path to the Excel document to the path of
your Excel document.

Dim objConnection As OleDb.OleDbConnection
Dim objCmd As OleDb.0OleDbCommand

Dim objDataAdapter As OleDb.OleDbDataAdapter
Dim objDataSet As New DataSet ()

Dim strConn As String

strConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data " & _
"Source=C:\ContactInfo.xls; " & _
"Extended Properties=Excel 8.0;"

objConnection = New OleDb.OleDbConnection (strConn)
objCmd = New OleDb.OleDbCommand("Select * from [sheetl$]",
objConnection)

objDataAdapter = New OleDb.OleDbDataAdapter (objCmd)

Try
objConnection.Open ()
objDataAdapter.Fill (objDataSet, "Notes")
DataGridl.SetDataBinding (objDataSet, "Notes")
Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

Building a DataSet Table from SQL Server

Place the following code behind the "obtnbDatasetFromsQL" click event:

Dim objConn As SglClient.SglConnection

Dim objCmd As SglClient.SglCommand

Dim objDataAdapter As New SglClient.SglDataAdapter ()
Dim objDataSet As New DataSet ()

Dim strSQL As String

Dim strConn As String

strSQL = "SELECT id, FName + ' ' 4+ MName + ' ' + " &
"LName as [Name], NName,"
strSQL += " Email FROM AddressBook"
strConn = "server=localhost;uid=sa;pwd=;database=addressbook"

objConn = New System.Data.SglClient.SglConnection (strConn)
objConn.Open ()

objCmd = New System.Data.SglClient.SglCommand (strSQL, objConn)

objDataAdapter.SelectCommand = objCmd
objDataAdapter.Fill (objDataSet, "AddressBook")

DataGridl.SetDataBinding (objDataSet, "AddressBook")

Building the Relationship

Now this is when things become a little more interesting. In this example, you will be calling
nearly the same code for populating your DataSet object as was used in the previous two
command buttons. Then you'll create two DataColumn objects and finally a DataRelation
object to solidify the relationship between the DataTables.

Place the following code behind the "otnBuildbataRelationship" click event:

'The DataSet object will be used by both SQL Server and Excel
Dim objDataSet As New DataSet ()

VAR AR A AR A AR A AR A A A AR A AR A A AR A A A AR A AR A AR A AR A AR A A ARk Kk

'Getting data from the Excel document.

VA AR Ak A A A A AR A AR I A AR A AR A A AR A AR A AR A AR A AR A A AR A Ak kA kK
Dim objConnectionl As OleDb.0OleDbConnection

Dim objCmdl As OleDb.OleDbCommand

Dim objDataAdapterl As OleDb.OleDbDataAdapter

Dim strConnl As String

strConnl = "Provider=Microsoft.Jet.OLEDB.4.0;Data " & _
"Source=C:\ContactInfo.xls; " & _
"Extended Properties=Excel 8.0;"

objConnectionl = New OleDb.0OleDbConnection (strConnl)
objCmdl = New OleDb.OleDbCommand(
"Select * from [sheetl$]", objConnectionl)

objDataAdapterl = New OleDb.OleDbDataAdapter (objCmdl)
Try
objConnectionl.Open ()
objDataAdapterl.Fill (objDataSet, "Notes")
objConnectionl.Close ()
Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

VAR AR A AR A AR A AR A AR AR A AR A A AR AR A A AR AR A AR A AR A AR A AR R XKk

'Getting data from SQL Server

VA AR A AR A A KR A A KA A I AR I AR I AR I AR A AR A AR A AR A AR A AR A AR A A KA K

Dim objConn2 As System.Data.SglClient.SglConnection

Dim objCmd2 As System.Data.SglClient.SglCommand

Dim objDataAdapter2 As New System.Data.SglClient.SglDataAdapter ()
Dim strSQL2 As String

Dim strConn2 As String

strSQL2 = "SELECT CAST(id AS FLOAT) as id, FName +" & _

"' '+ MName + ' ' + LName as [Name], NName," &
" Email FROM AddressBook"

strConn2 = "server=localhost;uid=sa;pwd=;database=addressbook"

objConn2 = New System.Data.SglClient.SglConnection (strConn2)
objConn2.0pen ()

objCmd2 = New System.Data.SglClient.SglCommand (strSQL2, objConn2)

objDataAdapter2.SelectCommand = objCmd2
objDataAdapter2.Fill (objDataSet, "AddressBook")

VA AR A AR A AR A A KA A I AR I AR I A A I AR A AR A AR A AR A AR A AR A AR A AR AKX

'Relating Tables

VAR AR A AR A AR A AR A A A AR A AR A A AR AR A AR A AR A AR A AR A AR ARk kA kKK

Dim objDataColumnlFk As New DataColumn(_
"AddressBook Id")
objDataColumnlFk = objDataSet.Tables(_
"Notes") .Columns ("AddressBook Id")

Dim objDataColumn2Pk As New DataColumn ("id")
objDataColumn2Pk = objDataSet.Tables ("AddressBook") .Columns ("id")

Try
Dim coll As DataColumn
Dim objDataRelation As New DataRelation(_
"Contact Notes", objDataColumn2Pk, objDataColumnlFk, True)
objDataSet.Relations.Add (objDataRelation)
Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

VA AR A AR A AR A A KA A I AR IR A A I AR A AR I AR A AR A AR A AR A AR A AR A A KA K

'Populating Grid.

VAR AR A AR A AR A AR A AR AR A A AR AR A AR A AR A AR A A AR AR A AR A A ARk Kk

Try
DataGridl.DataSource = objDataSet
Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

Extracting XML

Place the following code behind the "otnExtractxML" click event:

Dim objDataSet As New DataSet ()

VA A AR A AR AR A A KRR AR A AR A A AL A A AR A AR AR A A AR AR AR A A A AR A XAk

'Getting data from the Excel document.

ThkhkhhkhAkhrhkhkhA kA hkhk A kA hrhdkr kA rhkhkrhhkhkhhkkhkrhkhkhkrkkhkrxxk*x*x%
Dim objConnectionl As OleDb.OleDbConnection

Dim objCmdl As OleDb.OleDbCommand

Dim objDataAdapterl As OleDb.OleDbDataAdapter

Dim strConnl As String

strConnl = "Provider=Microsoft.Jet.OLEDB.4.0;Data " & _
"Source=C:\ContactInfo.xls; " & _
"Extended Properties=Excel 8.0;"

objConnectionl = New OleDb.OleDbConnection (strConnl)
objCmdl = New OleDb.OleDbCommand(
"Select * from [sheetl$]", objConnectionl)

objDataAdapterl = New OleDb.OleDbDataAdapter (objCmdl)

Try
objConnectionl.Open ()
objDataAdapterl.Fill (objDataSet, "Notes")
objConnectionl.Close ()

Catch ex As Exception
MessageBox.Show (ex.ToString)

End Try

VA A AR A AR AR A AR A A IR A AR A A A A A A A AN A AR A A A A AR AR A AR AR A AR KK

'Getting data from SQL Server

LIRS b e Sb b b db b I db b S db b I Sb b S Sb b I Sb b S S S S S Sb S S S S Sh b S Sb b I Sb b I Sb db 4

Dim objConn2 As System.Data.SglClient.SglConnection

Dim objCmd2 As System.Data.SglClient.SglCommand

Dim objDataAdapter2 As New System.Data.SglClient.SglDataAdapter ()
Dim strSQL2 As String

Dim strConn2 As String

strSQL2 = "SELECT CAST(id AS FLOAT) as id, FName +" & _

"' ' + MName + ' ' + LName as [Name], NName, "
strSQL2 += " Email FROM AddressBook"
strConn2 = "server=localhost;uid=sa;pwd=;database=addressbook"

objConn2 = New System.Data.SglClient.SglConnection (strConn2)
objConn?2.0pen ()

objCmd2 = New System.Data.SglClient.SglCommand (strSQL2, objConn2)

objDataAdapter2.SelectCommand = objCmd2
objDataAdapter2.Fill (objDataSet, "AddressBook")

VA AR A A KRR A KR A A KR A A I AR A AR A AR I AR A AR A A I A AR A AR A AR A AR A A KKK

'Relating Tables

VAR AR A AR A AR A AR A A A AR A AR A A AR A AR A AR AR A AR A AR A A AR AR A XKk

Dim objDataColumnlFk As New DataColumn ("AddressBook Id")
objbDataColumnlFk =
objDataSet.Tables ("Notes") .Columns ("AddressBook Id")

Dim objDataColumn2Pk As New DataColumn ("id")
objDataColumn2Pk = objDataSet.Tables ("AddressBook") .Columns ("id")

Try
Dim coll As DataColumn
Dim objDataRelation As New DataRelation(_
"Contact Notes", objDataColumn2Pk, objDataColumnlFk, True)
objDataSet.Relations.Add (objDataRelation)
Catch ex As Exception
MessageBox.Show (ex.ToString)

End Try

LI S b b Sb dE b db b I db b S Sb b S Sb b S b b I Sb b S S I S S S S db S S S b b S Sb b I Sb b I Sb b 4

'Populating Grid.

VA AR A AR A AR A AR A A KA A KA A A A AR I AR I AR A AR A AR A AR A A XA AR A A KA K

Try
TextBoxl.Text "
TextBox1l.Text objDataSet.GetXml
Catch ex As Exception
MessageBox.Show (ex.ToString)
End Try

Stored Procedures

Stored procedures are SQL Server database objects that store and execute scripts or groups of
scripts as batches. The scripting language supported by stored procedures is Transact SQL or
T-SQL.

All applications should perform data access exclusively through stored procedures when using
SQL Server. Stored procedures are precompiled code. You need to understand this point. You
will not find compiled binary files that are compiled stored procedures anywhere on an SQL
Server. The fact is that stored procedures are not actually compiled. The query plan, created
the first time the stored procedure is run, is stored in memory so that the next time the stored
procedure is run, a query plan does not need to be created again. This precompiled query plan
greatly increases performance.

You will create stored procedures to replace the data access code in your AddressBook
example. The stored procedures that are needed to replace the data access for our
AddressBook will be relatively simple as compared to the work they perform in real-life
applications. It's not uncommon for a stored procedure to be as large as forty to fifty pages.

Upgrading to Stored Procedures

The first thing you must do before upgrading the AddressBook application to use stored
procedures is to create the stored procedures.

Running Stored Procedure Scripts

You will find the following stored procedure scripts in the "Ch9 Examples" directory on the
CD-ROM. Open and execute these scripts with SQL Server Query Analyzer:

e ab GetAddressBookInfo ssp.sql
e ab GetContactDetaillnfo_ssp.sql
e ab InsertContact isp.sql

e ab UpdateContact usp.sql

e ab DeleteContact dsp.sql

ab_GetAddressBookinfo_ssp

Use the following code to create the new stored procedure:

if exists (select * from dbo.sysobjects where id =
object id(N'[dbo].[ab GetAddressBookInfo ssp]') and OBJECTPROPERTY (id,
N'IsProcedure') = 1)
drop procedure [dbo].[ab GetAddressBookInfo ssp]
GO
SET QUOTED IDENTIFIER OFF
GO
SET ANSI NULLS OFF
GO
CREATE PROCEDURE dbo.ab GetAddressBookInfo ssp
AS
SELECT id, FName + ' ' + MName + ' ' + LName as [Name], NName, Email FROM
AddressBook ORDER BY FName
GO
SET QUOTED IDENTIFIER OFF
GO
SET ANSI NULLS ON
GO

ab_GetContactDetaillnfo_ssp

Use the following code to create the new stored procedure:

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ab GetContactDetailInfo ssp]') and OBJECTPROPERTY (id,
N'IsProcedure') = 1)

drop procedure [dbo].[ab GetContactDetaillnfo ssp]

GO
SET QUOTED IDENTIFIER OFF
GO
SET ANSI NULLS OFF
GO
CREATE PROCEDURE dbo.ab GetContactDetaillInfo ssp
@intID int
AS
SELECT * FROM AddressBook WHERE id=@intID
GO
SET QUOTED IDENTIFIER OFF
GO
SET ANSI NULLS ON
GO

ab_InsertContact_isp

Use the following code to create the new stored procedure:

if exists (select * from dbo.sysobjects where id =
object id(N'[dbo].[ab InsertContact isp]') and OBJECTPROPERTY (id,
N'IsProcedure') =

1)

drop procedure [dbo].[ab InsertContact isp]
GO

SET QUOTED IDENTIFIER OFF

GO

SET ANSI_NULLS OFF
GO CREATE PROCEDURE dbo.ab InsertContact isp
@strFName varchar (20),
@strMName varchar (20
@strLName varchar (20
@strNName varchar (20
@strSName varchar (50
@strAddress varchar (
@strCity wvarchar (50),
@strState varchar(2),
@strZip varchar (10),
@strHomePhone varchar (14),
@strCellPhone varchar (14),
@strEmail varchar (100),
@strComments varchar (8000),
@strChildl wvarchar (20),
@strChild2 wvarchar (20),
@strChild3 wvarchar (20)
AS
INSERT AddressBook (FName, MName, LName,
NName, SpouseName, Address,
City, State, Zip, HomePhone,
CellPhone, EMail, Comments,
Childl, Child2, Child3)
VALUES (@strFName, @strMName,
@strLName, @strNName,
@strSName, @strAddress,
@strCity, @strState, @strzZip,
@strHomePhone, @strCellPhone,
@strEmail , @strComments,
@strChildl, @strChild2, @strChild3)

)
)y
)y
)y
50),

GO

SET QUOTED IDENTIFIER OFF
GO

SET ANSI NULLS ON

GO

ab_UpdateContact_usp

Use the following code to create the new stored procedure:

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ab UpdateContact usp]') and OBJECTPROPERTY (id,
N'IsProcedure') =

1)

drop procedure [dbo].[ab UpdateContact usp]

GO

SET QUOTED IDENTIFIER OFF

GO

SET ANSI NULLS OFF
GO

CREATE PROCEDURE dbo.ab UpdateContact usp
@strFName varchar (20
@strMName varchar (20
@strLName varchar (20
20
50

4

)

)

),
@strNName varchar (20) = '',
@strSName varchar (50)
@strAddress varchar (50) = '',
@strCity wvarchar(50) = '',
@strState varchar(2) = "'"',
@strZip varchar(10) = '"',
@strHomePhone varchar (14) = '',
@strCellPhone varchar(l14) = "'',
@strEmail varchar (100) = '',
@strComments varchar (8000) = '',
@strChildl varchar(20) = '"',
@strChild2 wvarchar(20) = "'"',
@strChild3 wvarchar (20)
@intID int

AS

UPDATE AddressBook

SET FName = (@strFName,
MName @strMName,
LName = @strLName,
NName = @strNName,
SpouseName = @strSName,
Address = @strAddress,
City = @strCity,
State = @strState,
Zip =@strZip ,
HomePhone = (@strHomePhone,
CellPhone = @strCellPhone,
EMail = @strEmail,
Comments = @strComments,
Childl = @strChildil,
Child2 = @strChild2,
Child3 @strChild3

WHERE id = @intID

GO

SET QUOTED_IDENTIFIER OFF

GO

SET ANSI_NULLS ON

GO

ab_DeleteContact_dsp

Use the following code to create the new stored procedure:

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[ab DeleteContact dsp]') and OBJECTPROPERTY (id,
N'IsProcedure') =

1)

drop procedure [dbo].[ab DeleteContact dsp]

GO

SET QUOTED IDENTIFIER OFF

GO

SET ANSI NULLS OFF

GO

CREATE PROCEDURE dbo.ab DeleteContact dsp
@intID int

AS

DELETE FROM AddressBook Where id = @intID
GO

SET QUOTED IDENTIFIER OFF

GO

SET ANSI NULLS ON

GO

Private Sub SP_GetAddressBookInfo ()
Dim strConn As String = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()
Dim objDataAdapter As New SglDataAdapter ()
Dim objDataSet As New DataSet ()

'CommandType.StoredProcedure
objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab GetAddressBookInfo ssp"

objCmd.Connection = objConn

objDataAdapter.SelectCommand = objCmd
objDataAdapter.Fill (objDataSet, "AddressBook")

DataGridAddressList.DataSource = objDataSet
DataGridAddressList.DataBind ()
End Sub

Private Sub SP GetContactDetailInfo (ByVal strID As String)
txtID.Text = strID

Dim strConn As String = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"

Dim objConn As New SglConnection (strConn)

Dim objReader As SglDataReader

Dim objCmd As New SglCommand ()

Dim objParamID As New SglParameter ("@intID", SqglDbType.Int)
objParamID.Direction = ParameterDirection.Input
objParamID.Value = CInt (strID)

'CommandType.StoredProcedure

objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab GetContactDetailInfo ssp"

objCmd.Parameters.Add (objParamID)

objCmd.Connection = objConn
objCmd.Connection.Open ()

objReader = objCmd.ExecuteReader
objReader.Read()
If Not IsDBNull (objReader.Item("id"))
Then txtID.Text = objReader.Item("id") Else txtID.Text = ""
If Not IsDBNull(objReader.Item(l))
Then txtFName.Text = objReader.GetString(l) Else txtFName.Text = ""
If Not IsDBNull (objReader.Item("MName"))
Then txtMName.Text = objReader.Item("MName") Else txtMName.Text = ""
If Not IsDBNull (objReader.Item("LName"))
Then txtLName.Text = objReader.Item("LName") Else txtLName.Text = ""
If Not IsDBNull (objReader.Item("NName"))
Then txtNName.Text = objReader.Item("NName") Else txtNName.Text = ""
If Not IsDBNull (objReader.Item("SpouseName"))
Then txtSName.Text = objReader.Item("SpouseName")
Else txtSName.Text = ""
If Not IsDBNull(objReader.Item("Childl"))
Then txtChildl.Text = objReader.Item("Childl") Else txtChildl.Text =
If Not IsDBNull (objReader.Item("Child2"))
Then txtChild2.Text = objReader.Item("Child2") Else txtChild2.Text

nwn

If Not IsDBNull (objReader.Item("Child3"))
Then txtChild3.Text = objReader.Item("Child3") Else txtChild3.Text

If Not IsDBNull (objReader.Item("Address")) _
Then txtAddress.Text = objReader.Item("Address")
Else txtAddress.Text = ""
If Not IsDBNull (objReader.Item("City"))
Then txtCity.Text = objReader.Item("City") Else txtCity.Text = ""
If Not IsDBNull (objReader.Item("State")) _
Then txtState.Text = objReader.Item("State") Else txtState.Text = ""
If Not IsDBNull (objReader.Item("Zip")) _
Then txtZip.Text = objReader.Item("Zip") Else txtZip.Text = ""
If Not IsDBNull (objReader.Item("HomePhone"))
Then txtHomePhone.Text = objReader.Item("HomePhone")
Else txtHomePhone.Text = ""
If Not IsDBNull (objReader.Item("CellPhone"))
Then txtCellPhone.Text = objReader.Item("CellPhone")
Else txtCellPhone.Text = ""
If Not IsDBNull (objReader.Item("Email"))
Then txtEmail.Text = objReader.Item("Email") Else txtEmail.Text = ""
If Not IsDBNull (objReader.Item("Comments"))
Then txtComments.Text = objReader.Item("Comments")
Else txtComments.Text = ""

objReader.Close ()

End Sub

Private Sub SP InsertContact ()

Dim strConn As String = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)

Dim objCmd As New SglCommand ()

'CommandType.StoredProcedure
objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab InsertContact isp"

Dim objParamFName As New SglParameter ("@strFName",
SglDbType.VarChar, 20)

objParamFName.Direction = ParameterDirection.Input

Dim objParamMName As New SqglParameter ("@strMName",
SqlDbType.VarChar, 20)

objParamMName.Direction = ParameterDirection.Input

Dim objParamLName As New SglParameter ("@strLName",
SglDbType.VarChar, 20)

objParamLName.Direction = ParameterDirection.Input

Dim objParamNName As New SglParameter ("@strNName",
SglDbType.VarChar, 20)

objParamNName.Direction = ParameterDirection.Input

Dim objParamSName As New SglParameter ("@strSName",
SglDbType.VarChar, 50)

objParamSName.Direction = ParameterDirection.Input

Dim objParamAddress As New SglParameter ("@strAddress",
SglDbType.VarChar, 50)

objParamAddress.Direction = ParameterDirection.Input

Dim objParamCity As New SglParameter ("@strCity",
SqlDbType.VarChar, 50)

objParamCity.Direction = ParameterDirection.Input

Dim objParamState As New SglParameter ("@strState",
SglDbType.VarChar, 2)

objParamState.Direction = ParameterDirection.Input

Dim objParamZip As New SglParameter ("@strzip", _
SglDbType.VarChar, 10)

objParamZip.Direction = ParameterDirection.Input

Dim objParamHomePhone As New SqglParameter ("@strHomePhone",
SglDbType.VarChar, 14)

objParamHomePhone.Direction = ParameterDirection.Input

Dim objParamCellPhone As New SglParameter ("@strCellPhone",
SglDbType.VarChar, 14)

objParamCellPhone.Direction = ParameterDirection.Input

Dim objParamEmail As New SqglParameter ("@strEmail",
SqlDbType.VarChar, 100)

objParamEmail.Direction = ParameterDirection.Input

Dim objParamComments As New SglParameter ("@strComments",
SglDbType.VarChar, 8000)

objParamComments.Direction = ParameterDirection.Input

Dim objParamChildl As New SglParameter ("@strChildl",
SglDbType.VarChar, 20)

objParamChildl.Direction = ParameterDirection.Input

Dim objParamChild2 As New SglParameter ("@strChild2",
SglDbType.VarChar, 20)

objParamChild2.Direction = ParameterDirection.Input

Dim objParamChild3 As New SglParameter ("@strChild3",
SglDbType.VarChar, 20)

objParamChild3.Direction = ParameterDirection.Input

'Add values
objParamFName.Value = txtFName.Text

objParamMName.Value = txtMName.Text
objParamLName.Value txtLName.Text
objParamNName.Value txtNName.Text
objParamSName.Value = txtSName.Text
objParamAddress.Value = txtAddress.Text
objParamCity.Value = txtCity.Text
objParamState.Value = txtState.Text
objParamZip.Value = txtZip.Text

objParamHomePhone.Value = txtHomePhone.Text
objParamCellPhone.Value = txtCellPhone.Text
objParamEmail.Value = txtEmail.Text
objParamComments.Value = txtComments.Text

objParamChildl.Value = txtChildl.Text
objParamChild2.Value = txtChild2.Text
objParamChild3.Value = txtChild3.Text

'Add parameters to command object
objCmd.Parameters.Add (objParamFName)
objCmd.Parameters.Add (objParamMName)
objCmd.Parameters.Add (objParamLName)
objCmd.Parameters.Add (objParamNName)
objCmd.Parameters.Add (objParamSName)
objCmd.Parameters.Add (objParamAddress)
objCmd.Parameters.Add (objParamCity)
objCmd.Parameters.Add (objParamState)
objCmd.Parameters.Add (objParamZip)
objCmd.Parameters.Add (objParamHomePhone)
objCmd.Parameters.Add (objParamCellPhone)
objCmd.Parameters.Add (objParamEmail)
objCmd.Parameters.Add (objParamComments)
objCmd.Parameters.Add (ocbjParamChildl)
objCmd.Parameters.Add (objParamChild2)
objCmd.Parameters.Add (objParamChild3)

objCmd.Connection = objConn
objCmd.Connection.Open ()

objCmd.ExecuteNonQuery ()
End Sub

Private Sub SP UpdateContact ()

Dim strConn As String = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"

Dim objConn As New SglConnection (strConn)

Dim objCmd As New SglCommand ()

'CommandType.StoredProcedure
objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab UpdateContact usp"

Dim objParamID As New SglParameter ("@intID", SqglDbType.Int)

objParamID.Direction = ParameterDirection.Input

Dim objParamFName As New SglParameter ("@strFName",
SglDbType.VarChar, 20)

objParamFName.Direction = ParameterDirection.Input

Dim objParamMName As New SglParameter ("@strMName",
SglDbType.VarChar, 20)
objParamMName.Direction = ParameterDirection.Input
Dim objParamLName As New SqglParameter ("@strLName",
SqlDbType.VarChar, 20)
objParamLName.Direction = ParameterDirection.Input
Dim objParamNName As New SglParameter ("@strNName",
SglDbType.VarChar, 20)
objParamNName.Direction = ParameterDirection.Input
Dim objParamSName As New SglParameter ("@strSName",
SglDbType.VarChar, 50)
objParamSName.Direction = ParameterDirection.Input
Dim objParamAddress As New SglParameter ("@strAddress",
SglDbType.VarChar, 50)
objParamAddress.Direction = ParameterDirection.Input
Dim objParamCity As New SglParameter ("@strCity",
SglDbType.VarChar, 50)
objParamCity.Direction = ParameterDirection.Input
Dim objParamState As New SqglParameter ("@strState",
SqlDbType.VarChar, 2)
objParamState.Direction = ParameterDirection.Input
Dim objParamZip As New SglParameter ("@strZip",
SglDbType.VarChar, 10)
objParamZip.Direction = ParameterDirection.Input
Dim objParamHomePhone As New SqglParameter ("@strHomePhone",
SglDbType.VarChar, 14)
objParamHomePhone.Direction = ParameterDirection.Input
Dim objParamCellPhone As New SglParameter ("@strCellPhone",
SglDbType.VarChar, 14)
objParamCellPhone.Direction = ParameterDirection.Input
Dim objParamEmail As New SglParameter ("@strEmail",
SglDbType.VarChar, 100)
objParamEmail.Direction = ParameterDirection.Input
Dim objParamComments As New SglParameter ("@strComments",
SqlDbType.VarChar, 8000)
objParamComments.Direction = ParameterDirection.Input
Dim objParamChildl As New SqglParameter ("@strChildl",
SglDbType.VarChar, 20)
objParamChildl.Direction = ParameterDirection.Input
Dim objParamChild2 As New SglParameter ("@strChild2",
SglDbType.VarChar, 20)
objParamChild2.Direction = ParameterDirection.Input
Dim objParamChild3 As New SglParameter ("@strChild3",
SglDbType.VarChar, 20)
objParamChild3.Direction = ParameterDirection.Input

'Add values
objParamID.Value = CInt (txtID.Text)

objParamFName.Value = txtFName.Text
objParamMName.Value = txtMName.Text
objParamLName.Value = txtLName.Text
objParamNName.Value = txtNName.Text
objParamSName.Value = txtSName.Text

objParamAddress.Value = txtAddress.Text
objParamCity.Value = txtCity.Text
objParamState.Value = txtState.Text
objParamZip.Value = txtZip.Text
objParamHomePhone.Value = txtHomePhone.Text
objParamCellPhone.Value = txtCellPhone.Text
objParamEmail.Value = txtEmail.Text
objParamComments.Value = txtComments.Text

txtChildl.Text
txtChild2.Text
txtChild3.Text

objParamChildl.Value =
objParamChild2.Value
objParamChild3.Value

'Add parameters to command object

objCmd.
objCmd.
objCmd.
objCmd.
objCmd.
objCmd.

Parameters.
Parameters
Parameters
Parameters
Parameters
Parameters

.Add
.Add
.Add
.Add
.Add

Add (objParamID)

objParamFName)
objParamMName)
objParamLName)
objParamNName)
objParamSName)

objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add
objCmd.Parameters.Add

objParamAddress)
objParamCity)
objParamState)
objParamZip)
objParamHomePhone)
objParamCellPhone)
objParamEmail)
objParamComments)
objParamChildl)
objParamChild?2)
objParamChild3)

N~ o~ o~~~ o~~~ o~~~ o~~~ —~

objCmd.Connection = objConn
objCmd.Connection.Open ()

objCmd.ExecuteNonQuery ()
End Sub

Private Sub SP DeleteContact()
Dim strConn As String = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)

Dim objCmd As New SglCommand ()

Dim objParamID As New SglParameter ("@intID", SglDbType.Int)
objParamID.Direction = ParameterDirection.Input
objParamID.Value = CInt (txtID.Text)

'CommandType.StoredProcedure

objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab DeleteContact dsp"
objCmd.Parameters.Add (objParamID)

objCmd.Connection = objConn
objCmd.Connection.Open ()

objCmd.ExecuteNonQuery ()

Replacing Function Calls

You are now almost done. Your last task is to replace your previous function calls with your
new stored procedure functions.

PopulateAddressBook

Replace the "pPopulateaddressBook" function with the sP_GetAddressBookInfo. You will
find this functionality in the following functions:

e Page Load

e ChangeGridPage
e IbtnDelete Click
e IbtnEnter Click

Your code will look like this:

'PopulateAddressBook ()
'Using a Stored Procedure
SP_GetAddressBookInfo ()

GetContactDetail

Replace the "GetContactDetail" function with the SP_GetContactDetailInfo. You will
find this functionality in the following functions:

'GetContactDetail (strID)
'Using a stored procedure.
SP_GetContactDetaillInfo (strID)

InsertRecord

Replace the "InsertRecord" function with the sp_ InsertContact. You will find this
functionality in the following functions:

lbtnEnter Click

'Tf 1blMode.Text = "New" Then InsertRecord()
'Using Stored Procedure
If 1lblMode.Text = "New" Then SP InsertContact ()

UpdateRecord

Replace the "UpdaterRecord" function with the sp_UpdateContact. You will find this
functionality in the following functions:

'Tf 1blMode.Text = "Edit" Then UpdateRecord()
'Using Stored Procedure
If 1blMode.Text = "Edit" Then SP UpdateContact ()

DeleteRecord

Replace the "DeleteRecord" function with the SP_DeleteContact. You will find this
functionality in the following functions:

'DeleteRecord()
'Using Stored Procedure
SP_DeleteContact ()

Running the AddressBook Application

Go ahead and run the AddressBook sample application. Chances are you will have a few
typos and you might need to debug the application to find them. Once you have everything
working correctly, you will find that each function you run may take a little longer the first
time. This is because the query plan is being built the first time you run each stored procedure.
Once everything has been run at least once, you will notice a considerable performance gain.
Obviously, the performance gain will be much more noticeable on a larger application, but
you should notice a difference even at this level. Something else you will notice is that you
can now enter any type of symbol you wish into your application, such as a single or double
quote. When building queries dynamically within the application, these symbols can cause
exceptions and additional coding to compensate.

Using Stored Procedures and XML

In this section, you will perform four tasks that use SQL Server 2000 stored procedures and
XML. First, you will upgrade your AddressBook application with two new stored procedures
to replace your Insert and Update functions. These new stored procedures will accept a single
parameter of string. Next, you will demonstrate the ability to perform multiple inserts by
taking advantage of XML. Finally, you will export your entire AddressBook to XML. Once
the XML document has been extracted, you may further enhance the AddressBook
application by emailing, saving to disk, or searching the exported XML document.

Insert and Update

Go ahead and replace your new stored procedures for Insert and Update. You will find the
following stored procedure scripts in the "Ch9 Examples\XML" directory on the CD-ROM.
Open and execute these scripts with SQL Server Query Analyzer:

e dbo.ab InsertContactXML isp.sql
e dbo.ab_UpdateContactXML usp.sql

ab_InsertContactXML _isp

if exists (select * from dbo.sysobjects where id =
object id(N'[dbo].[ab InsertContactXML isp]') and OBJECTPROPERTY (id,
N'IsProcedure')
= 1)
drop procedure [dbo].[ab InsertContactXML isp]
GO
SET QUOTED IDENTIFIER OFF
GO
SET ANSI NULLS ON
GO
CREATE PROCEDURE dbo.ab InsertContactXML isp @xmldoc text
AS
DECLARE @idoc INT
--Create an internal representation of the XML document.
EXEC sp_xml preparedocument @idoc OUTPUT, @xmldoc
INSERT INTO AddressBook (FName, MName, LName,
NName, SpouseName, Address,

City, State, Zip, HomePhone,
CellPhone, EMail, Comments,
Childl, Child2, Child3)

SELECT FName, MName, LName, NName, SName, Addr,
City, State, Zip, Home, Cell, EMail, Comments,
Childl, Child2, Child3

FROM OPENXML (Q@idoc, 'AddressBook/Contact', 2) WITH

(FName Varchar (20) 'FName',
MName Varchar (20) 'MName',
LName Varchar (20) 'LName',
NName Varchar (20) 'NName',
SName Varchar (50) 'SpouseName',
Addr Varchar (50) 'Address’',
City Varchar (50) 'City’',
State Varchar (2) 'State’,

Zip Varchar (10) 'Zip',

Home varchar (14) 'HomePhone',
Cell varchar (14) 'CellPhone’,
EMail varchar (100) 'EMail’',
Comments varchar (8000) 'Comments’',
Childl Varchar (20) 'Childl"',
Child2 Varchar (20) 'Child2"',
Child3 Varchar (20) 'Child3")

-— remove the XML document from memory
EXEC sp_xml removedocument @idoc

SET QUOTED IDENTIFIER OFF

SET ANSI NULLS ON

if exists (select * from dbo.sysobjects where id =
object id(N'[dbo].[ab UpdateContactXML usp]') and OBJECTPROPERTY (id,
N'IsProcedure')
= 1)
drop procedure [dbo].[ab UpdateContactXML usp]
GO
SET QUOTED IDENTIFIER OFF
GO
SET ANSI NULLS ON
GO
CREATE PROCEDURE dbo.ab UpdateContactXML usp
@xmldoc varchar (2000)
AS
DECLARE @idoc INT
--Create an internal representation of the XML document.
EXEC sp xml preparedocument @idoc OUTPUT, @xmldoc
UPDATE AddressBook
SET FName = XMLUpdate.FName,
MName = XMLUpdate.MName,
LName XMLUpdate.LName,
NName = XMLUpdate.NName,
SpouseName = XMLUpdate.SName,
Address = XMLUpdate.Addr,
City = XMLUpdate.City,
State = XMLUpdate.State,

Zip =XMLUpdate.Zip ,

HomePhone = XMLUpdate.Home,
CellPhone = XMLUpdate.Cell,
EMail = XMLUpdate.Email,

Comments = XMLUpdate.Comments,
Childl = XMLUpdate.Childl,
Child2 = XMLUpdate.Child2,
Child3 = XMLUpdate.Child3

FROM OPENXML (Q@idoc, 'AddressBook/Contact', 2) WITH
(ContactID int tid',
FName Varchar (20) 'FName'
MName Varchar (20) 'MName''
LName Varchar (20) 'LName'
NName Varchar (20) 'NName''
SName Varchar (50) 'SpouseName',
Addr Varchar (50) 'Address'
City Varchar (50) 'City',
State Varchar (2) 'State’
Zip Varchar (10) 'Zip'
Home varchar (14) 'HomePhone',
Cell varchar (14) 'CellPhone'
EMail varchar (100) 'EMail’,
Comments varchar(SOOO) 'Comments’
Childl Varchar (2 'Childl’',
Child2 Varchar (2) 'Child2"',
Child3 Varchar (20) 'Child3')XMLUpdate, AddressBook

WHERE AddressBook.id XMLUpdate.ContactID
-- remove the XML document from memory
EXEC sp_xml removedocument @idoc

GO

SET QUOTED IDENTIFIER OFF

GO

SET ANSI NULLS ON

GO

SP_InsertContact

Replace the "sP InsertContact" function with the sP InsertContactxmMr. You will find
this functionality in the following functions:

'ITf 1lblMode.Text "New"
'Using Stored Procedure
'If 1blMode.Text = "New" Then SP InsertContact ()
'Using a Stored Procedure with XML

If 1lblMode.Text "New" Then SP InsertContactXML ()

Then InsertRecord()

SP_UpdateContact

Replace the "sp_UpdateContact" function with the sSp_ UpdateContactxMr. You will find
this functionality in the following functions:

'Tf 1blMode.Text = "Edit" Then UpdateRecord()
'Using Stored Procedure

'If lblMode.Text = "Edit" Then SP UpdateContact ()
'Using a Stored Procedure with XML

If 1blMode.Text = "Edit" Then SP UpdateContactXML ()

Updating the AddressBook Functions

Now that you've created the stored procedures, go ahead and open up the AddressBook
sample application.

Creating the New SP_InsertContactXML Function

Private Sub SP InsertContactXML ()
Dim strConn As String = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()
Dim StringBuilderXML As New StringBuilder ()

'Build XML string
StringBuilderXML.Append ("<AddressBook>")
StringBuilderXML.Append ("<Contact>")

StringBuilderXML.Append ("<FName>" & txtFName.Text & "</FName>")

& "</MName>")
StringBuilderXML.Append ("<LName>" & txtLName.Text & "</LName>")
StringBuilderXML.Append ("<NName>" & txtNName.Text & "</NName>")

(
(
(
StringBuilderXML.Append ("<MName>" & txtMName.Text
(
(
(

StringBuilderXML.Append ("<SpouseName>" & txtSName.Text &
"</SpouseName>")

StringBuilderXML.Append ("<Address>" & txtAddress.Text & "</Address>")

StringBuilderXML.Append ("<City>" & txtCity.Text & "</City>")

StringBuilderXML.Append ("<State>" & txtState.Text & "</State>")

StringBuilderXML.Append ("<Zip>" & txtZip.Text & "</Zip>")

StringBuilderXML.Append ("<HomePhone>" & txtHomePhone.Text &
"</HomePhone>")

StringBuilderXML.Append ("<CellPhone>" & txtCellPhone.Text &
"</CellPhone>")

StringBuilderXML.Append ("<EMail>" & txtEmail.Text & "</EMail>")

StringBuilderXML.Append ("<Comments>" & txtComments.Text &

"</Comments>")
StringBuilderXML.Append ("<Childl>" & txtChildl.Text & "</Childl>")
StringBuilderXML.Append ("<Child2>" & txtChild2.Text & "</Child2>")
StringBuilderXML.Append ("<Child3>" & txtChild3.Text & "</Child3>")
StringBuilderXML.Append ("</Contact>")
StringBuilderXML.Append ("</AddressBook>")

Dim objParamID As New SglParameter ("@xmldoc", SglDbType.Text)
objParamID.Direction = ParameterDirection.Input
objParamID.Value = StringBuilderXML.tostring

'CommandType.StoredProcedure

objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab InsertContactXML isp"
objCmd.Parameters.Add (objParamID)

objCmd.Connection = objConn
objCmd.Connection.Open ()

objCmd.ExecuteNonQuery ()

Private Sub SP UpdateContactXML ()
Dim strConn As String = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"
Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()
Dim StringBuilderXML As New System.Text.StringBuilder ()

'Build XML string StringBuilderXML.Append ("<AddressBook>")
StringBuilderXML.Append ("<Contact>")
StringBuilderXML.Append ("<id>" & txtID.Text & "</id>")
StringBuilderXML.Append ("<FName>" & txtFName.Text & "</FName>")
StringBuilderXML.Append ("<MName>" & txtMName.Text & "</MName>")
StringBuilderXML.Append ("<LName>" & txtLName.Text & "</LName>")
StringBuilderXML.Append ("<NName>" & txtNName.Text & "</NName>")
StringBuilderXML.Append ("<SpouseName>" & txtSName.Text &
"</SpouseName>")

StringBuilderXML.Append ("<Address>" & txtAddress.Text & "</Address>")
StringBuilderXML.Append ("<City>" & txtCity.Text & "</City>")
StringBuilderXML.Append ("<State>" & txtState.Text & "</State>")

(

(

~ o~ o~~~ —~

StringBuilderXML.Append ("<Zip>" & txtZip.Text & "</Zip>")
StringBuilderXML.Append ("<HomePhone>" & txtHomePhone.Text &
"</HomePhone>")
StringBuilderXML.Append ("<CellPhone>" & txtCellPhone.Text &
"</CellPhone>")
StringBuilderXML.Append ("<EMail>" & txtEmail.Text & "</EMail>")
StringBuilderXML.Append ("<Comments>" & txtComments.Text &
"</Comments>")
StringBuilderXML.Append ("<Childl>" & txtChildl.Text & "</Childl>")
StringBuilderXML.Append ("<Child2>" & txtChild2.Text & "</Child2>")
StringBuilderXML.Append ("<Child3>" & txtChild3.Text & "</Child3>")
(
(

StringBuilderXML.Append ("</Contact>")
StringBuilderXML.Append ("</AddressBook>")

Dim objParamID As New SqglParameter ("@xmldoc", SglDbType.Text)
objParamID.Direction = ParameterDirection.Input
objParamID.Value = StringBuilderXML.ToString

'CommandType.StoredProcedure

objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab UpdateContactXML usp"
objCmd.Parameters.Add (objParamID)

objCmd.Connection = objConn
objCmd.Connection.Open ()

objCmd.ExecuteNonQuery ()

End Sub

XML Batch Insert Example

What's attractive about using XML with stored procedures is the ability to perform multiple
inserts and updates. Previously, you had to call an insert procedure once for each insert you
wanted to perform. When passing in an XML document holding multiple records, SQL Server
stored procedures can perform all the inserts and updates in a single call. Actually, the stored
procedure treats the XML document like a collection of data when extracting data, then
applies the change. Making a single call to the database when it performs multiple inserts or
updates greatly reduces overhead and increases both scalability and performance. To create
the application, follow these steps:

1. Create a new Visual Basic .NET windows application and name it "XMLBatchInsert".
2. Drag-and-drop one Command Button, one Label, and one TextBox onto the form and
set the properties that are listed in Table 9-6.

Table 9-6: Control Properties for XMLBatchlnsert

Control Property Value
Button ID btnXMLBatchInsert
Text Perform XML batch insert
Label ID Labell
Text Path to XML Document
TextBox ID TextBox1
Text D:\ch9 Examples\XML\contacts.xml

Import Namespaces

Use the following import statements:

Imports System
Imports System.IO

'Read XML from a file.
Dim strXMLFile As String
strXMLFile = TextBoxl.Text

Dim objXMLStringBuilder As New System.Text.StringBuilder ()

Dim objStreamReader As StreamReader = File.OpenText (strXMLFile)
Dim strXMLString As String
strXMLString = objStreamReader.ReadLine ()
While Not strXMLString Is Nothing
objXMLStringBuilder.Append (strXMLString)
strXMLString = objStreamReader.ReadLine ()
End While

'Perform XML Insert.
Dim strConn As String = "Data Source=localhost;Initial " & _
"Catalog=AddressBook;User Id=sa;Pwd=;"

Dim objConn As New System.Data.SglClient.SglConnection (strConn)
Dim objCmd As New System.Data.SglClient.SglCommand ()
Dim objParamID As New System.Data.SglClient.SglParameter ("@xmldoc",

SglDbType.Text)
objParamID.Direction = ParameterDirection.Input
objParamID.Value = objXMLStringBuilder.ToString
'Commandtype.StoredProcedure
objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = "ab InsertContactXML isp"

objCmd.Parameters.Add (objParamID)
objCmd.Connection = objConn
objCmd.Connection.Open ()

objCmd.ExecuteNonQuery ()

The Imported XML File

The file you are using from which to import is a basic XML formatted file.

<?xml version="1.0" encoding="utf-8" ?>
<AddressBook>
<Contact>

<FName>David</FName>
<MName>E .</MName>
<LName>Pledger</LName>
<NName>Dave</NName>
<SpouseName></SpouseName>
<Address>556 XML Lane</Address>

<City>Dayton</City>
<State>OH</State>
<Zip>55555</Zip>
<HomePhone>555-555-5556</HomePhone>
<CellPhone>555-555-5556</CellPhone>
<EMail>Pledger@MyEmail.com</EMail>
<Comments>Dave owns Strategic Data Systems, Inc.</Comments>
<Childl>girll</Childl>
<Child2>girl2</Child2>
<Child3></Child3>

</Contact>

<Contact>
<FName>William</FName>
<MName>B</MName>
<LName>O'Reilly</LName>
<NName>Bill</NName>
<SpouseName>Mrs. O'Reilly</SpouseName>
<Address>555 No Spin Zone</Address>
<City>New York</City>
<State>NY</State>
<Zip>33333</Zip>
<HomePhone>555-555-5555</HomePhone>
<CellPhone>555-555-5555</CellPhone>
<EMail>Oreilly@FoxNews.com</EMail>
<Comments>Bill works for Foxnews.</Comments>
<Childl>kidl</Childl>
<Child2>kid2</Child2>
<Child3>kid3</Child3>

</Contact>

<Contact>
<FName>William</FName>
<MName>H</MName>
<LName>Bennethum</LName>
<NName>Bill</NName>
<SpouseName></SpouseName>
<Address>555 No Spin Zone</Address>
<City>Cincinnati</City>
<State>OH</State>
<Zip>45555</Zip>
<HomePhone>555-555-5555</HomePhone>
<CellPhone>555-555-5555</CellPhone>
<EMail>Bill@myMail.com</EMail>
<Comments>Bill's Company</Comments>
<Childl>Robert</Childl>
<Child2>William</Child2>
<Child3></Child3>

</Contact>

</AddressBook>

Running the Application

Go ahead and run the application. Make sure the path that references the Contact.xml
document is correct. After you have run this application, you can verify that the new records
have been inserted by running the AddressBook application.

Summary

ADO.NET offers a variety of data access methods to address different scenarios. As you
learned, there really is an appropriate way to use certain techniques. The way in which you
implement data access technologies directly relates to an application's ability to both perform
and scale. You also learned that additional performance gains can be obtained by working
with other technologies optimized for data access, such as SQL Server stored procedures. The
use of stored procedures cannot be emphasized enough. Finally, by leveraging the use of
XML with stored procedures improves both performance and scalability when dealing with
multiple inserts or updates.

Chapter 10: Web Services

Overview

Since the inception of the network and, more recently, the Internet, attempts have been made
to allow programs to extend their functionality across machine boundaries. Several successful
attempts have encompassed much of the distributed world, including Java RMI, CORBA, and
DCOM, but they have tended to be both platform and language dependent.

A web service is a remotely accessible method in which data is stored in XML and
transmitted over HTTP. In English, that means a web service method is accessible by clients
while communicate using TCP/IP and understand XML. This includes nearly every
programming platform available. The application service provider builds the web services and
makes it available to client applications known as consumers.

In this chapter, you'll learn about the industry accepted technologies that make cross-platform
interoperability possible, and the underlying concept of web services.

Web Service Technologies

Web services are delivered using a combination of technologies. While Visual Studio .NET
shields you from much of the complexities of these technologies, you should have a basic
understanding of what these technologies are and how they work. If you work with web
services for any length of time you will need to be able to modify some of the supporting files
manually, just as a web developer might modify HTML pages after they are generated. So,
let's have a quick look at the basics of each underlying technology.

XML

XML is designed for ease of implementation and for interoperability with both SGML and
HTML. XML (Extensible Markup Language) is a self-describing language that is stored and
transmitted as a string. The ability to transmit XML as a string is significant because all
programming languages and platforms understand how to handle a string, making XML ideal
for passing between disparate systems. Figure 10-1 shows an example of how contact
information might be stored in XML format. The plain English tags of XML (for example,
<contact>, </contact>) make XML readable and easy to learn and understand.

LEONTRITE)

coontacts
cnare>Tamarah Densays) names
£ fileiiEn 555 -5 55 RE 654/ phones
<omad L todmyErad]l . conc/enaily

ofcontact>

CSONTacT>
LnamesDavid HELL< names
<phores 5 55 -555- 5555/ phones
emad il ey Eral 1. come/eamils

CFEOntacts

coontacts
<namesiharon HiLlodnomes
Cphofen 555 =555 5555¢/ phones
<o 1vs hgmyErad 1. comc)/ eaad]

Lfcontacts

seontacts
cnamerlas Hille/ names
<phoees bl 0L LILL: fhonas
oy 12 iy Erad] . oo/ anails

<fcontacts

Loontacts
<naresl indree HE1leSfnamss
cphores 555 -555-5555¢/ phones
comad] 1 himyErad], come/enadly

CICOnacts

Llcomtacksy

Figure 10-1: Contact information stored in XML format.

XML Schema

XML Schemas define the data schema of the data stored in the XML document and is a handy
tool for further defining the data structure, data types, and constraints for XML documents.
The data schema can be used by applications that understand XML to enforce data specific
business rules such as data types.

This extended data definition (XML Schema) can reflect the underlying database, such as data
types and rules, in an effort to validate the data before transmitting it. This will save both time
and effort for developers because all data validation is defined in a single location as well as
reduces unnecessary round trips for data that doesn't transmit properly the first time due to
data violations. As a result, an XML Schema is often referred to as a contract between
exchanging partners because it defines what is (and is not) valid data.

XSLT

XSLT (eXtensible Stylesheet Language Transformations) is a language used to transform
XML data into other XML data formats. For instance, two different companies store customer
information but store different information for each customer. Transforming XML documents
extends the usability of your XML document for other systems and devices by transforming
XML data into a format that other systems use. XML documents can also be formatted, using
XSLT, for display purposes.

HTTP

HTTP (HyperText Transfer Protocol) is an IP protocol used for transition. HTTP is the data
transfer mechanism of SOAP, as well as Microsoft's web services, although web services are
not strictly defined as using HTTP as its sole form of transport. Other forms of transfer are
available for web services, such as .NET Remoting; however, this is beyond the scope of this

book. For additional information on SOAP and .NET Remoting, refer to "Applied SOAP:
Implementing .NET XML Web Services" or MSDN online.

WSDL

WSDL (Web Service Definition Language) defines the interface and behavior of web
services. WSDL allows remote developers to communicate with web services without
necessarily contacting the developer of the web service. WSDL effectively decouples the web
service consumer's developer from the web service's developer. Visual Studio .NET creates
the WSDL for each Web Service.

UDDI

UDDI (Universal Description, discovery, and Integration) is like a DNS server for web
services. A DNS server stores a list of domain names and associated IP addresses; when a
request is made to the DNS server for the IP address of a specific domain name, the DNS
server resolves the name to an IP address, and the client can connect directly to the desired
domain.

The UDDI aids in the discovery of businesses that provide Web Services. Businesses use
UDDI to publish Web Services so that consumers can find and consume the Web Services.

Eliminating Batch Processing Paradigms

For example, how many times have you suggested that a system might provide a better
service to the customer if it were real-time, only to have a developer tell you that it can't be
real-time because it is based on a batch process of file transfers between disparate systems,
followed by nightly processing of those files. While it is not necessarily true that the system
cannot be modified to support real-time transactions, the batch process tends to be the
hammer or the only tool available. Web services allow us to get rid of old batch processing
paradigms and begin working toward more transactional based, real-time solutions.

Ability to Charge for Web Services

Another advantage of web services is the ability to charge for services rendered by your web
service. If your web service provides a proprietary function that other applications wish to
use, you can charge back to the customer a monthly service or even a transactional fee.
Charge back options are truly endless and limited only by the imagination.

Web Service Hubs

Web services can also be combined to form hubs for other services offering greater flexbility
in the way information is distributed. For example, as shown in Figure 10-2, one financial
company might act as a hub for other financial services: The web services client would call
each web service (such as Taxes, Loans, etc.), or talk only to the hub (the Financial Hub),
while the hub communicates with the appropriate service on the client's behalf.

T awiag (W2

Invastmants Crascit Shock
. Lomns (WS 5 s Infarmation
W) W31 | B Bureau pws) e
{WE]
1
e | E— - —

F il
Hulh (W5

Figure 10-2: Diagram of a web services hub model.

Creating a Simple Web Service

Let's create a simple web service to demonstrate several common tasks that must be
performed on all new web services.

1.

2.

Create a new project using the "ASP.NET Web Service" application template under
the "Visual Basic Projects" project types.

When creating the new project, change the web service name by replacing the location
with the desired service name "FullName", as shown in Figure 10-3, which includes
the namespace of the new web service.

Hirws Projoct ﬁl
& b
Broject Ty Terplatod: e
3 Vil Blarsic Prajects - - A
= Vs TF Projects ID E ﬂ
— Vieas L Fropects wWindhws CassUbrary Windows
= St anad Depdoryment Prodechs Applation Condred Ll sy

| &] Other Projects

] Wisal Siako Soktions ‘ _? é Ty
g do vy

A5 NET 'Web A5 .NET Wieh Web Control
Applation Servion Libwrary

A puaject bor croating XML Wish serdces bo use from obfer applcolions

Bame: |
|ocaton: [P itesc st Frtbanrves] = LI
Progect will e oreated ot hip:[iocaing st Fulliyme.

o [ok]| conce | peo |

Figure 10-3: Creating a new web service.

Rename the "Servicel.asmx" file, which is automatically added to the project, to
"NameService.asmx".

Open the code window of the "NameService.asmx" file and replace the default class
name with "FullName".

Public Class FullName
Inherits System.Web.Services.WebService

Now, import the System.Text namespace at the very top of the code window for the
NameService.asmx file.

O
11. Imports System.Text
L i e e e e et e e e e et e e e e

13. Create a new web method with the following code that uses the stringBuilder class.
(You imported the System. Text namespace so you could access the class more easily.
If you hadn't imported it you could have accessed the class with its fully qualified

namespace, System. Text.StringBuilder.)
L e e e e e e e e

15. <WebMethod()> Public Function FullName (ByVal strFName As String,

16. ByVal strLName As String) As
String

17. Dim objStringBuilder As StringBuilder

18. objStringBuilder.Append (strFName)

19. objStringBuilder.Append (" ")

20. objStringBuilder.Append (strLName)

21. Return objStringBuilder.ToString

22. End Function

2

24. Add a description to our new web service as an attribute of the FullName with the web

method's class declaration statement:
220 TS

26. <WebService (Description:="This web service returns a full name.",

27. Namespace:="http://tempuri.org/")>
28. Public Class FullName
0

Compiling the Web Service

You can test the new web service without even a consuming application. To do so, press F5 to
run the web method. The web service will first compile and then display a web page pointing
to the "NameService.asmx" web service, as shown in Figure 10-4. The URL,
http://localhost/FullName/NameService.asmx, contains the fully qualified namespace of the
web service. As you can see in the figure, the browser window displays the name of the web
service class, FullName, as well as a description of the class: "This web service returns a full
name."

B Fulittamw Web Sorvicw - Sonmd| inlaimt Explone previdbed by Compay

Pl EE Ves Fgemten ook Hen [
Qs Q- W @ @) Ot frromn @Pres @3- 50EL O D
Sgihma | b ol W e s =
FullName

Thi vl i el i Bl e

Trom bl oo o8 vl sie o ommlall Tav o Dol defd e, pams fme s T Saep i e i fjdies

v Lullsame

i *
] vera S sl it

Figure 10-4: The web page displayed when running a web service from within the Visual

Studio .NET IDE.

Finally, you'll see the warning displayed in Figure 10-5. When creating a new web service a
temporary namespace is supplied by default; this warning reminds you that you need to

replace the default.

Thin sl rervcn rebums & hel nems

Thes ol seany S Parataors e suppoeted. Far o forma) defnenon, plaass reviess the Serveie Des

w Ful

This weeh serwior by walng bity: | ftompurl.orgf o0 & defesl namexpace,
Eeppmmendatien: Chenge the defoult ngesespage belore the XML Wk seryics b made public,
Bisch MML Wik darvica raedi o g Farsipacn m onder for chank aplisherd B datnguiih E e dthar

vereson s ors the Web bip JdSempar orgt o avadikle fae ML Veek servises that pre snder develooreL A
pubebuterd <HL Wab sorvcm iboabd une & Inerd S TeaTEn Do

o WML Wb servive showkd b ahortifiod by a somespect Teet you confael For saarmole; jou cen use por
g s Inkemet domen rans & et of the nereioste . AKhough many M. WeD SErice saTesasces
lesak Dk b LLE, Ty NiBEl POA OBNE 0 AETLEI FRHSUPTES 58 T W, (XPL WD GHFvicB RATCRACHS Are LI 1E)
For =HL Wk perviles oreatr uEng A5 ART, e difaull pamaeis 097 be tharged usng the Mabdersie
atirbete's Nsnsspace proparty. The SebServion st-ituls o o strButs scolled ta Bie clan Bt certsra the
APIL Weh BeTv0n Methisls. Baliew 15 & 0008 Enampie TR S50 e ASTEIEA0E 10
“hita: Sinexwsafoomdfmebearooe £
[]

[T fary 1o (Ramsspacss=herg | S ielorTosafe, con sshesreioesd *1]

pablic ¢lass EydebBervice |

id usplesentation
1

iewual Basc MIT

<¥ebService (Namsapace: =“RLLE 1/ SRLOC0S0TT com webee rviceal *)» Fublio {lsss Ky
! AEplEmERTATLEE
End Clsas

sl | LIﬂ

2l Il.ulhk\-d

F_igure 10-5: This warning tells you that you need to change the namespace of the web

service.

To replace this temporary namespace, return to the code window and replace
"http://tempuri.org/" with "http://localhost/FullName/". Once you have a server on the
Internet, replace "localhost" with your server's real host name. Run the web service again and

you'll see that the warning is gone.

Viewing the WSDL

To see the WSDL for the web service, select "Service Description". You should see the screen

shown in Figure 10-6.

‘ Wl AT ol s Hamader v our o T - kel bdas ool epleenr pooy ked by Comopay

B bR pee Rpedlem [k Ee >
Q- 3 5 & fn Seed e e fF -5 = ao

L R S) - =

"

Pl venora 0 encudngeut -0 5
CRBTATIANE L W T rhE M aranag e el h

it naps RIS s ke seminap on o] s

t awthiRpsd v ol o FONKE S NV Beharma® e o 0 hiepc) Socalbert 5 slihame
wew i/ el sardusap. org S nap fereoding®
e =i f el ol e o Preadilf m b F2asd ol ching P
vitd =oma=thil g Sechaman sedio ag B il fnsime
R TR E = TP/ IO EA IR EL ST A F* o =TI 1 F SR Hrisaap. arg el

- ITYRE

= 41 PEFETE B ICENT ST0NE - QuUallEd” i ST ang 6l i - TRER/ NICCalReH /T Ul Eme
T
wa Lo ypes
3 BT

T o T e T e P T s
wemrent mestcoune Tl madocurie® 1Y e ur e typos usiring” S
SRR
R Ty
0 ek

o v rares FellvameResponse™s

R STATTTL NPT RSURRIL L P TR SO

il B B

bl 1w S

Figure 10-6: The WSDL for the FullName web service.

Testing the Web Service
Now that you've compiled the web service and examined its WDSL, you should test it:

1. Press the browser's Back button to return to our web service page then click the
"FullName" hyperlink. You should see the test page shown in Figure 10-7. The test

page, automatically generated by Visual Studio .NET, is the consumer of our web
service.

Bl B e Paewlsr [oed Hel F

- L NE s T - | % Amh Lot @l) 2 05 T a e

L Py S - ﬂm

FullName 1

Chew berrr e @ ooepiris b o speaao.

Full Nmms
Teat
T kel B cparabon wneg Som TR GO probaccl, chok e Treois’ bustan

Faramemws Ve

R

T b

S0P
oo Fitummmy 5 a ooy SCAP pPrgaml v et . The plas vhgiders duae wed o e ieplaved mid il valae
AT /P ul D e Service. soms NTTROI.0

Noavr bab

Conbmst-Type: twatismly chacmsisutf-H -
i ¥
| e S Lo caret

Figure 10-7: The web service's test screen.

2. Now enter a first and last name in the text boxes and then click Invoke. The result is
an HTTP 500 - Internal server error, as shown in Figure 10-8.

N ITTP 500 Fabes el ey we ovevs i rwsaodl Dot rond Duplisres pravisbed by Compag r-l.'-' b
&
)

T OE Eee Fporois Dotk e
n| @ o s Forembei ﬂ'vm £ R ﬂ _J'
[T SRS R N TCIE R ERP S SRPL [T, R T SR —" «| [2 r

i\.; Thi pasge canmcl be displayesd

Thars o & arckam =eth 5 page TE R TN B reat and &
cannct te clipec.,

G et Sl Puarv g, vl e il i ik, i The
wheaalin wayaml
g :1-:|'|I'rn|'|:.r.|:'| # by agen lats

i s 35 L w3 P 03 Ve [

B B &

§ T A

e S Ll rrnat

F-igure 10-8: The HTTP 500 Internal server error.

Oops! Looks like you've got a bug. The page can't be displayed.

Debugging our Web Service

Like many error messages this one tells you nearly nothing about what has gone disastrously
wrong, so you'll have to debug things:

1.

Close the browser and return to the web service code page. Because the error message
provides little information concerning the violation, you'll place a breakpoint on the
declaration line of the "FullName" web method, which will trigger once the breakpoint
is reached.

Run the web service again and then enter a first and last name. Click Invoke. The
break point will trigger, as shown in Figure 10-9, stopping execution, and allowing
you to step through the code.

i vwsed | ¥t Haiic: HE | | Bk - HumeSae rwice

g P B0y e - e e e = Twskl Lz ou Reed a
E sh ey Rl s | = | Pt bgpiw ... B K|
(o2t | [t =|32m &k 3

¢ ol B el (1% Badad b Frometdon Ful Kese (Iy¥al steMimee Ls Br img,
EyVal suciase An Stzicg) da Sccisa

al
- @ M | i e 0888 BTt dhoen B K
| e 1| [e ™

L -y o .w.;...z'.: | (] Covmmaned st | B8 Cnnn (5] Tt [

= 1 oot 3] |

Figure 10-9: Displays the break point that is triggered.

Step into the code by pressing F11. You'll notice that while you declared
"objStringBuilder" as a StringBuilder object, you never actually created the object in
memory before referencing it. To correct this, replace the objStringBuilder declaration
line with the following declaration and instantiation line.

(@)
o
s
3
o
o
.
n
ot
i
-
s
Q
o)
c
e
—
o
™
i
b
0]
=
™
=
n
ot
i
[
s
Q
o]
c
e
—
o
®
i

7. Remove the breakpoint and run the web service again. This time it should execute
successfully, as shown in Figure 10-10.

D bttt A ul Plarer v Seervice. mums¥ ml M Tt Fam = JelToni Mo <Domesy - Mxime... = [0
W @ G e e @ @ (3 S @ AP
P L TR S N TR TS . % s |ur =
< eml virsanra" 1. encndegstull-E T
shirg wwnas’bpef Socalhiost /T el eme s Jefary Dunssay <stngs

8] o [[P p—

Figure 10-10: The result of a successful execution of your web service.

Consuming the Web Service

Now that you've created and tested the web service, your job may be complete. However, in
many cases, you are creating web services for consumption by your own applications. For
instance, you may want to expose functionality to a Windows Form application that resides
outside the company network. (Historically, form-based applications could not communicate
through a firewall because all but port 80 were often blocked. Because web services operate
on port 80, this manner of distributed computing is made possible.)

The following sample application will consume the new web service:
1. Create a new Visual Basic "Windows Application" and name it "WinFullName."

2. Drag-and-drop the controls that are listed in Table 10-1 onto the Windows Form. (The
end result should look similar to Figure 10-11.)

Table 10-1: Windows Form Controls

Control Property Value

TextBox Name txtFName
Text "

TextBox Name txtLName
Text "

Label Name IblResult
Text "

Button Name btnSubmit
Text "Submit"

™ Form1 Q@

Figure 10-11: The consuming application.

Adding a Web Reference to Access the Service

Before you can access the web service you must reference it from the consuming application.
To do so, follow these steps:

1.

Right-click on the "WinFullName" project and select "Add Web Reference".

2. Enter the URL of the web service in the "Address" text box and press enter. A screen

should appear similar to Figure 10-12. Press "Add Reference."

—~r [y
Snalibi view i
FullName das

e el i ol il o Ml i Bt b e b Sercp 17

Thp i) 85 0] P B P i R]
i et O 8 CeDE B O R

| aedpwrcn | -:.rul] g

Figure 10-12: The "Add Web Reference" dialog box.

Right-click on "localhost" under Web References and rename it to "WSFullName".
(This allows you to couple the code loosely in the client with the web service. If you
ever choose another web service provider for your client, all you need to do is change
the reference.)

Place the following code behind the "Submit" button. This code will consume the web
service and then display the result.

Private Sub btnSubmit Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles
btnSubmit.Click

9 Dim objWSFullName As New WSFullName.FullName ()

10. 1blResult.Text = objWSFullName.FullName (txtFName.Text,
11.
txtLName.Text)
12. End Sub
L i e e e e e et e e e

14. Now test the application by inputting a first and last name. Click Submit. If all goes
well, your Windows Form should look like Figure 10-13. The Web Service
concatenated the first and last names and returned the full name for display in the
consuming client application.

= Form1

| Cheryl | Dunaway

Cheryl Dunaway

Figure 10-13: The consuming Windows Form.

Debugging a Web Service from the Client

As you've just seen, it's easy to debug a web service with Visual Studio .NET, but you have
yet to debug the web service from the new client. The ability to debug a web service from the
client application can be useful as the web service developer may not always be in possession
of the client code. To do so, follow these steps:

1. Load both projects in separate instances of Visual Studio .NET.

2. Place breakpoints in the web service project and run it (ignoring the test web page).

3. Now run the WinFullName application and click the Submit button. The web service
project will break into debug mode; you may perform any debugging task you wish.

Summary

Web services are a new and powerful addition to your development tool set, allowing you to
build applications with other developers and to build their consuming applications
independently. Thanks to technologies such as WSDL, you can couple both developers and
applications.

The cross-platform characteristics of web services means a new paradigm must exist for
building and delivering distributed applications. This new paradigm extends the Windows
DNA application architecture and mode to include components of platforms other than
Microsoft specific platforms. As the .NET paradigm shift continues and the Windows DNA
model adjusts to the new technology, you will discover and learn new models or alterations of
models for delivering N-tier distributed applications.

This chapter has demonstrated each aspect of web service development. Despite the simplicity
of each example, the processes of creation, publication, consumption, and testing are the
same.

Chapter 11: COM Interop

As software applications have extended from client server to Ntier architectures, the need for
componentization has increased. Microsoft introduced the Component Object Model (COM)
as a binary compatible component model that allowed for further modularity and language
independence for languages that understand and support binary compatibility. Unfortunately,
binary compatibility does not guarantee all languages will support the same data types.

Assembly Development

NET assemblies support a Type Safe standard which requires all NET languages to support
the same data types, effectively addressing the pitfalls of binary compatibility. All assemblies
are consumable by all other assemblies or .NET languages. All data types are understood
because .NET languages subscribe to and enforce the Common Type System provided by the
NET Framework; the cross-platform framework that .NET languages subscribe to.

COM Interoperability

COM interoperability allows COM and assemblies to work seamlessly with each other. This
interoperability is critical for wide acceptance and the adoption of the .NET platform.
Interoperability allows classic COM components to consume assemblies and also allows
assemblies to load and use classic COM components. While there is a cost associated with
interoperability, there are gains in productivity, migration, and integration.

Building the Assembly

To demonstrate the ability of classic COM to interoperate with assemblies, you'll build an
assembly, then a .NET consuming application to test the component, and finally a classic
COM consuming application to demonstrate COM interoperability. To begin, follow these
steps:

1. Create a new Visual Basic .NET Class Library project named "Math".

2. Rename the "Class1.vb" file to "clsMath.vb".

3. Rename the "Public Class Classl1"to "Public Class clsMath" in the code file

4. Create a public function named "suM" by applying the following code:

5

6. Public Class clsMath

7.

8. Public Function SUM(ByVal intA As Integer, ByVal intB As Integer)
As Integer

9. Return intA + intB

10. End Function

11.

12. End Class
1

14.

15.

16.

20.
21.
22.

23.

24.

Build the project by selecting Build Solution from the Build menu. Before attempting
to consume the assembly by classic COM, test it using a native Windows Form
assembly.

Add a new Visual Basic NET Windows Form project named "MathTestClient" by
selecting New then Project from the menu.

Drag the following controls onto the Windows Form and set the properties that are
listed in Table 11-1.

Table 11-1: Control Properties for MathTestClient

Control Property Value
Form Name Forml
Text "MathTestClient"
Size 300, 164
StartPosition CenterScreen
TextBox Name txtA
Location 28, 20
Text "
TextBox Name txtB
Location 160, 20
Text "
Label Name Labell
Text +
Font Microsoft Sans Serif, 12pt
Location 136, 20
Size 16, 20
Button Name btnCalculate
Location 28,52
Size 100, 24
Text Calculate
Label Name IblResult
Location 160, 52
Size 100, 20

Set the MathTestClient project as the StartUp Project.

Right-click on the Reference folder of the MathTestClient and select Add Reference.
Select the Projects tab, double-click on the Math project, and select OK. This will add
the assembly reference to your test client.

Place the following code behind the Calculate button:

If IsNumeric (txtA.Text) And IsNumeric (txtB.Text) Then

26.
27.
28.
29.
30.
31.
32.

Dim objMath As New Math.clsMath ()

1blResult.Text = objMath.SUM(txtA.Text, txtB.Text)
objMath = Nothing
Else

MessageBox.Show ("You must provide a number in each box")
End If

33. Run the application to verify that the Math class is working correctly and can be

consumed by the .NET test client (Figure 11-1).

5 MathTestClient M=1E3 |

Calculate

Figure 11-1: The .NET Consuming client application.

Building the COM Component

To continue the demonstration of COM interoperability, you'll create binary compatible COM
Components that will later be consumed by your assembly. The example that you'll build here
will be exactly like the .NET assembly and consumer, except that it will be built using classic

COM.

To begin, create a new Visual Basic 6 project:

1.

Open Visual Basic 6 by selecting Start « Programs ¢ Microsoft Visual Studio 6.0 ¢
Microsoft Visual Basic 6.0.

2. Select ActiveX DLL and press Open, as shown in Figure 11-2.

Pewbroimt T

Mew | ending| Hecers |

an,
pp 2 ¥ N
standwd ExE ActiveX EXE [RENEEAREN Actwex v Applcation
Coeitral \Wirard
-, % % % %
S I
e
VE wizard Active, Agtves Addin Data Froject
Manages Document 0 Docoment Exe
[P F= =
T [2o]

Edirn Carcal |
Controls

™ Dont dhose iz disiog n e e

Figure 11-2: Visual Basic 6's new project template selection dialog box.

3. Select project1 and change the name property to classicCOMMath.
4. Rename the c1ass1 ClassModule to c1sMath.
5. Click the save icon. You will be prompted for the location where you wish to save

your new Visual Basic 6 project and the c1sMath class.
Note Because Visual Basic 6 supports only one class per ClassModule file, you do not
see a class declaration as you might expect. As far as Visual Basic 6 is

concerned, a class declaration would be redundant.

6. Place the following code in the code window of the clsMath ClassModule:

e

8. Public Function SUM(ByVal intA As Integer, ByVal intB As Integer)
As Long

9. SUM = intA + intB

10. End Function

L e e e e e et ettt e e e e e e e e

Note To return the SUM value, you set the function name, in your case SUM, equal to
the value that you wish to return. This is different than the code used to return
the function's value with your assembly. The return keyword enables the return
of function values in .NET.

12. Select Make classiccoMMath.dll from the File menu.

Visual Basic 6 supports Binary, Project, and No Compatibility options. If the
classicCOMMath project is configured for project or no compatibility, any client referencing
the classiccommath component will be outdated because the project and no compatibility
options create new GUIDs for the class and components on each compile. Binary
compatibility requires that the developer be notified if binary compatibility will be broken

during the next build, giving the developer the option to decline the build. Before a project
can be binary compatible, there must be an initial component DLL with which to compare
binary compatibility with. As such, binary compatibility cannot be configured until the project
has been compiled at least one time. Step 7 of this example has compiled your project into the
classicCOMMath.d11 component. Now you can set the compatibility level to Binary
Compatibility:

1. Select classiccoMmMath Properties from the Project menu.
2. Select the Component tab (Figure 11-3).

classicCOMMath - Project Properties x|

General | Make | Compie Component | Debuggirg |
~Skart Mods
= Scanddlone

& Activedt Component

~ Femote Server -

I Ramats S Pl
~Version Compatibill:y
" ho Compatibity

[classiccommath.a fe

[ok] cowd | Hee |

Figure 11-3: The Component tab of the Project Properties dialog box.

3. Select Binary Compatibility and press OK.
4. Select Make classiccoMMath.dll from the File menu.
5. Select OK and click Yes to replace the previously compiled component.

As you did with the assembly, you'll build a classic COM consumer for your new classic
COM Component. Once you're satisfied that the component works properly you can consume
it with a .NET consumer:

1. Select Add Project from the File menu item.
2. Select Standard EXE (Figure 11-4) and press Open.

(98]

e

(haarosec TP

Hew I Ewsting | Recent |

¥ = » B N °

S DS ActrveX EXE Ackivel DL BctiveX V8 Application

Control ‘Wizard
% S & L)
N OB D B M
Fo
WE \Wizard Bt Azkheas Addin Custa Pragect

Mansger Document D1 Document Exe

Fam Py o T

i

Help

Figure 11-4: The standard EXE template project for Visual Basic 6.

Select the Projectl project and set the Name to "classicMathTestClient".
Click the Save button to save the new project and the project group.

Note The project group is similar to Visual Studio .NET's Solution.
Double-click on Forml.

Drag the following controls onto the Form1 form and set the properties that are listed
in Table 11-2.

Table 11-2: Control Properties for classicMathTestClient

Control Property Value
Form Name Forml
Height 2100
Width 4215
StartPosition 3—Windows Default
Caption MathTestClient
TextBox Name txtA
Top 240
Left 480
Width 1215
Height 285
Text "
TextBox Name txtB
Top 240
Left 2280
Width 1215

Height 285

Table 11-2: Control Properties for classicMathTestClient

Control Property Value
Text "

Label Name Labell
Top 240
Left 1920
Width 135
Height 255
Caption +

Button Name cmdCalculate
Top 720
Left 480
Width 1215
Height 375
Caption Calculate

Label Name IblResult
Top 840
Left 2280
Width 1215
Height 255
Caption "

10. Right-click on the classicMathTestClient and select Set as Startup.
11. Select References from the Project menu item.
12. Select the check box by classiccomMath (Figure 11-5) and click OK.

) Visual Basic For Applc stons H Carel |
v Wigual Basic runtime objects and procedures

A Wigual Basic objects and procedures
Erowsa,.. |
v TR

[1AS RADIUS Protocad 1.0 Type Lbrary

[l active 05 [15 Extendson D Priority

] Active DS IS Mamespace Provider Hela |
L] &ctive DS Type Library ﬂ

[l ctive Seoup Control Lbrary

] Acthelnstall 1.0 Typs Library

] ActiveMevie control bype ibeary
|I3.Ltwex BLL bo perform P'r're[llm of M5 Remntu:ri'ﬂ
A k

rdassc COMMath
Location: C:\BobiRepica’Projects|Book Dwals\Boak. . WET Developers (Gul
Larvguage: EnghshiUnited States

Figure 11-5: The References dialog box of Visual Basic 6.

13. Place the following code behind the cmdCalculate button:
T e et e e e e e e e e e e e

15. Private Sub cmdCalculate Click()

16. If IsNumeric (txtA.Text) And IsNumeric (txtB.Text) Then

17. Dim objMath As New classicCOMMath.clsMath

18. 1blResult.Caption = objMath.Sum(txtA.Text, txtB.Text)

19. Set objMath = Nothing

20. Else

21. MsgBox ("You must provide a number in each box")

22. End If

23. End Sub

2 e e e e e e et et ettt ettt e et et e e et e e e

Notice that there are a few changes in the code here when compared with the client
code in the .NET consuming client application. When setting the display value of the
IblResult, you use the Caption property. .NET uses the Text property as the display
property for all controls, which makes development just a little easier. To make
objMath equal to nothing, you use the Set command in Visual Basic 6 while .NET no
longer uses the Set keyword. Finally, the MessageBox.Show command has been
changed to MsgBox.

25. Run the project by selecting Start from the Run menu.

Note Once you are satisfied that the application works, save your changes then shut down the
development environment.

Now that you have a .NET assembly and .NET consumer, and a classic COM component and
consumer, you are ready to learn about COM Interoperation.

Consuming Classic COM with .NET

From this point, your job is pretty easy. You've built the classic COM component and the
.NET consuming client; now all you need to do is change your references and change the
component's name. (Technically, the assembly's name has nothing to do with COM
Interoperability; however, to avoid confusion you named your assembly and classic COM
component differently.)

Follow these steps to consume the classic COM component with your .NET consumer client
application:

1. Open the "Math" Visual Studio .NET solution.

2. For now, just ignore the Math project and expand the References of the
MathTestClient project.

3. Right-click on Math and select Remove.

4. Right-click on References and select Add References.

Select the COM tab.

e

Note When you select the COM tab, it may take several seconds to query the
Windows Registry to build a collection of available COM components.

6. Scroll to classiccoMMath (Figure 11-6) and double-click it.

fidd Beference
JET COM | Projects |
Urovee..

Cowporenthere [ipebee. Jram [a
a0l L0 Ty Wibwary 10 CAProgeom FleahCoreagling...
Catalogerwer 1.0 Type Lbeary 100 WIS rpsbern 2 cats-..
i Erigre 1.0 T Loy 10 | Prisge v Pl rmatin ...
COCBContred 1.0 Type Lirary 10 Cr\Progeam Fles\CREATIVEL. ..
Crth 1,0 Vg Lbeary 0 CWIND WS St S .,
CertMgr 1.0 Ty LEwary [E1] CIWTNES, Sl A0 er .
ot 1.0 Typo ieary (K] VAT, Syl o, ol
daarCOMMath (K1} CoADoouments and Seiirgsis...
C¥Ernpe 1,0 Ty Lbrary (K] VAT, St e
COLECAT LD Tvpe LErsry (K] CWTNC S, Sl 30 .
wolzsder 1.0 Typs Liorary L0 Ci\Progeam FlesYCormoni Bl ..
A & | e Tors libvare 100 1 T] el 3

Salached Comporents:

Corparent N | Type Source I Heriroe

ichars Cr\Dooursnts and Seitingsiso..

o | conce | -5

Figure 11-6: The COM tab of the Add Reference dialog box in Visual Studio .NET.

7. Press OK.
8. Bring up the code window for the Form1 class.

9. The only piece of code you will need to change is the component's name. Replace
e

11. Dim objMath As New Math.clsMath ()
L e e e e e e e e e e e ettt et et et e e e e e e et e e,

13. Run and test the .NET consuming client application.
Exposing Assemblies to Classic COM
Now expose your assembly so classic COM can consume it.

All components within a .NET project are found within the same directory, thus eliminating
the need to register its location with the operating system. Classic COM, on the other hand,
depends solely on the operating system to expose both its location and interface. When a
classic COM component searches for another component, it does so through the Windows
Registry.

To make your Math assembly easier to work with, we'll give it a strong name to uniquely
identify it. A strong name is required to uniquely identify a component in the GAC (Global
Assembly Cache), where the assembly must reside to be accessible by classic COM.

You also need to "export" your assembly's type library, which allows classic COM
components to understand how to use the assembly. However, since your component doesn't
really have a type library, you'll generate one based on the assembly manifest. (For the
purposes of this discussion, consider the type library exported, especially since the utility used
to generate it is t 1bexp.exe.)

sn.exe (Strong Name Tool)

Use the sn.exe utility to create a strong name consisting of a public/private key pair. To
create a public/private key pair file, follow these steps:

1. Open the Visual Studio .NET Command Prompt by selecting Start « Programs
Microsoft Visual Studio .NET ¢ Visual Studio .NET Tools ¢ Visual Studio .NET
Command Prompt.

2. Navigate, using the command line, to the Math project's root directory, then enter the
following at the command line:

The file created is not specifically intended for any specific file until you have told your
project that this is the key file to use.

Figure 11-7 displays a list of features that are available with the sn.exe utility. Some of the
more notable ones appear in bold.

Satrreat e mms of Bl O3 2 use fox MSOONSA cpecations.
- comtafmry

Dalots bey costadsn pamsd 4 contxi sy,
B cosmblydr comsmhlyls

Warldy cosmblyts ssf csstlyis difar caly by wdpbere.
o caisn Ailln

tradal] ey puly frm siediley Gvis & by covtainar samed cooviaker
& oot
Gessrste & o bay padr snd wribe St Gvte ssetillar.

-
Qubrt modr. This sption mesd b Firsd o the comad Lise ssfl will spprass
= weipel stbe thas arver s,

U crigmtlys 4iefiles
We-45ps wigeed of partinlly slgaed msmtly w1ty
B chbemtlpy oieeEAImEr

by o Ghsbeenlyy [lopelhes «1th e pusiic ey

EPIETIR, o mpey
] cinisembiys

Werldy crsmbiys far viren asme slgastare wif cmslibmey, 14 ouf is
spetifind, foron wrldfiodion eem 1 disshind is The sepistry,

Wi

LI duiiest brttlngs Fon aioeg e v |9 laties o s seibde
NI anpissiiy | (|

kst thaald be apeid Flad B8 5 dNTIRg B
L

rngls T aaibmeiy P el Loaties siipeieg, The te Tedel G
anisi by mawing are Pl Liwed b1 B oHT

¥

et 13 verid latios Slissing enries

.
Fiaplapt vhis ke lp ot

Figure 11-7: Strong Name Utility (SN) options.
tibexp.exe (Type Library Exporter)

Before you can expose assemblies to classic COM, you must export a type library. You'll use
the tlbexp.exe utility to generate or export a type library that binary compatible classic COM
understands. To do so, enter the following command at the Visual Studio .NET command to

generate a type library with the name of Math.tlb:

Figure 11-8 displays a list of features that are available with the t1bexp.exe utility with the
more notable ones appearing in bold.

Syntax: TIbExp AssesmblyNase |f":-:-ti|-|«.]

Detions:
Fout ; Filehane File name of type library to be produced
Frnlogo Prevents TloExp from displaying log
fsilent Frevents TlbExp from displaying swccess message
Mearbose Meplays extra informatica
Frames | F 1eMane & file in which each line specifies the
captialization of & name In the type libfary.
T (help bisplay this usage message

Figure 11-8: Type Library Converter (TIbExp) options.
regasm.exe (Assembly Registration Tool)

You may also use the regasm.exe utility to both generate a type library and register your
assemblies with COM. The following command will create a type library and register the
Math.dll with the operating system:

Figure 11-9 displays a list of features that are available with the regasm.exe utility. Some of
the more notable features appear in bold.

Syntax: Reghsa AssemblyPath [Opticas]

Options:

funregister Unregister types

FELb] P lebame | Export the assesbly to the specified type library
and pegister it

fregfile[:FileMame] Cerwrate a reg file with the specified name
{mnstead of registering the types. This cptisn
carnot be wied with the fu or ftlb options

frodebase 3t the code base In the registry

fregictered Only refer to already registered type libraries

fmaloge Prevents Reghsm from displaying logo

feilont Silent mede. Prevemts displaying of success messages

fvarbose brigplays extra imformation

fi or /help [dsplay this usage message

Figure 11-9: Assembly Registration Utility (RegAsm) options
galutil.exe (Global Assembly Cache Tool)

No matter how you designate a strong name and generate a type library, there is no getting
around the galutil.exe. Use gacutil.exe to add all assemblies to the GAC (Global Assembly
Cache) so that classic COM can know what the component is:

Figure 11-10 displays a list of features that are available with the gacutil.exe utility. The more
notable ones appear in bold.

Urage: Cacwd]

05 dona
n

| <optioro | <pumemetersy]

Onaftalls an sanesbly fo the globsl sosmbly oo, Tarbads the
rass o Rhe dile contudning the mnilert s 2 parssster,

Esasple: 1 mfdl.411

fid
IesRalls a8 assesbly 1o U globul sassbly cacke s Farces
overstite 11 assesbly alresdy exisis In cache, [olede the
ram i A T1le comtadeing the seeifell o @ parasster
Exasple: /17 wyD11.d11

r
Teanalls as aadeably 1o Ui globadl aidesdsly el wilid trsced
srfetence. Do lude Ui nme of flle comlalnlayg malfeit,
srfusesin soteme, 10 s deicd lplion ik parssterd
Exsmple: E D111 FICERATH @i sn Pylpp

#ullngun]

Undmitalls on denbly. Include the nees of the ismbly to
searww 0 o parsseter. 1F ngen iu agecifisd, the svesbly in
romcwnd from the cache of ngem'd file, otherdue the ausmbly
dn semowed drom the globsl sassbly cache

Exsmplas:.
Jungen w0l
Ju w1l Werndoesd.d 0.0, Cult B Lz iy ELTREE
fo
Unirafalls oo smsmmbly seberece, Tralude the ame of the

sanambly, fype of peferencs, 10 snd dots @ paramsbery,

Fuanpls

o], Verndonad.a

i
61,8, Cul e, Pub L1 ey Tk NT-0ad Eabll 56 2 505
FILEFATH ci'appsayaps et Pylgp

il
Foroes wiratall of a0 spesbly by Tesoviag all
Inclmie Bhe Yy]] rome of 1he dembly 1o Temowe P
Bagamb]y will b memossnd @nleid Telelenied by Wimdne [ectaller
Exaspli: /d

wvE]] Werdersa. 0,000,

f

Cultumes , PubrLLe ey Tolonta & nd pobd e 2 iy

Lists the costents of the global aisebly oo, Alloes sptissal
Eisembly ramw pagimeler 1o List milching insmblies saly

Liiti the costenti of the global wideetily chcha with traced
sefesence irdfesmition. Allewd opticeu]l Fismbly arss parmetes
B2 1450 mafekdng ideaslis enly

Fodll

Celefen the contenin of the downlosd csche

4

Riats the comtawts of the dowslomied Files cache

fralog

Suppreses dliplay of 1he logs havver

Fallemy

Tpprein daplay of all outpsit

it

Dlsplays tihls Pelp dorees

Figure 11-10: Global Assembly Cache Utility (Gacutil) options.

Consuming .NET with classic COM

Now you'll expose your Math.d11 to classic COM and configure the classic COM consuming
application to use it:

DWW N =

o U1

S 0 %0

11.

12.
13.
14.

Open the Visual Studio .NET Command Prompt.
Navigate to the Math project's root directory. (Not the \bin directory)
Use the Strong Name Tool to generate a public/private key pair.

Open the .NET Math Solution.
Ignore the MathTestClient project for now and focus on the Math project.
Open the code window for the AssemblyInfo.vb file.

0 Insert the following attribute that tells the compiler to use the keypair.snk file that you

just created as the public/private key pair file for strong naming the assembly:

'Tells the compiler what file to use when assigning a
'strong name to this component.
<Assembly: AssemblyKeyFile ("keypair.snk")>

15.

16.
17.

18.

19.
20.

21

22.

23.
24.

25.
26.

27.
28.

29.

30.
31.
32.

33.

34.
35.

36.
37.

Note If you created the KeyPair.snk file using the SN utility while the Math Solution
is open, the project will not build. You will need to shut down the project and
reload it.

Save your changes and select Rebuild Solution from the Build menu.

Now you need to register your assembly in the Global Assembly Cache (GAC) using
the Global Assembly Cache Tool (gacutil.exe). First navigate to the Math project's bin
directory (cd bin) and type the following command:

. After running the regasm utility to register your assembly with COM Services, the

assembly can be used for late binding. As late binding is often undesirable for
performance reasons, you'll use early binding. Use the Type Library Exporter to
generate a type library that classic COM objects understand. After running the t1bexp
utility, your client applications can access the assembly using early binding:

Close down the assembly project as there is nothing left to do here. Open the Visual
Basic 6 project named "classicMathTestClient".

Select References from the Project menu item.

Deselect the check box from classiccoMMath.

Scroll down until you find a component named Math.

Note If for some reason you are unable to find the Math reference, you can navigate
directly to the Math. t1b file using the Browse button.

Select the check box and press OK.
Change the declaration like from this

38. Select Run and test the application.

Summary

In this chapter, you learned about the significance of COM Interop. You explored COM
Interop by creating classic COM components to be consumed by a .NET Windows Form and
creating a .NET assembly to be consumed by a Visual Basic 6 Form application. The next
step will be to add Enterprise Services as described in Chapter 12, "Enterprise Services."

Chapter 12: Enterprise Services

Enterprise applications often require enterprise level services. COM+ provided these services
for classic COM and the .NET Framework allows access to these COM+ services through the
Enterprise Services namespace. These services range from transactional support for a two-
phase commit to object pooling.

Throughout this chapter you will add Enterprise Services to the Wedding List sample
application. First, you will take a closer look at COM+ and its related services.

What is COM+?

COM+ is not COM (Component Object Model) but rather a set of services that are provided
to COM Components. Because COM+ 1.0 was developed before .NET, it does not natively
understand assemblies.

A Brief History of COM+

Component technologies have developed significantly over the last decade. Microsoft first
introduced componentized code in components described as providing a service called OLE
(Object Linking and Embedding) that quickly became COM. For awhile everything seemed to
be COM until the technology matured and Microsoft marketing renamed COM to ActiveX.
Then, of course, everything became ActiveX but we all know this is still the same old COM,
so for the remainder of this chapter we will refer to binary compatible components as COM.

COM continued unchanged until CORBA introduced its RPC (Remote Procedure Call)
capabilities. RPC is the ability to make calls to remote methods. Microsoft answered CORBA
with DCOM (Distributed Component Object Model). While DCOM's plumbing is complex,
you can think of it as COM's ability to instantiate, use, and unload a COM object across
process and machine boundaries. In effect, the COM object does not know the actual location
of the remote computer. The local COM component talks to a proxy as if the proxy is the
desired remote object while the proxy handles security and networking required to
communicate with the remote computers stub which acts on the behalf of the remote COM
Component.

Figure 12-1 shows a conceptual view of a client (left) communicating with a remote object
(right). The proxy working on behalf of the client actually resides within the same machine as
the client reducing the client's requirement to know about anything beyond it's machine
boundaries. The proxy uses the Window Registry to determine the physical machine name of
the machine containing the remote method.

Calling Ramota
COM COM
Componant Componant

||||||

Figure 12-1: This is a simple DCOM scenario.

The stub, as shown in figure 12-1, communicates with the desired remote component. The use
of the proxy and stub effectively abstracts the complexity of component location, network
protocol development, and security, allowing the component developer to focus more on
interface-based programming.

As slick as the DCOM model sounds, one does not need to look too far to discover its
shortcomings. One disturbing realization is the time required to load and unload remote
components. Often, this time is more than the time required to perform the business process.
As you might imagine, without additional effort, a straightforward DCOM solution is not
scalable.

Transaction processing, connection pooling, object pooling, and object life time are all
developed by the DCOM programmer. Sure, this is fun the first time until you realize that
every DCOM solution requires the same type of plumbing.

A DCOM controller (shown in Figure 12-2) is commonly used to address these issues. As
shown in the diagram, all remote clients access the same instance of a DCOM object which
abstracts the use of all other business objects. The DCOM controller manages the number of
components loaded and their life time, thus allowing the same object to be used by multiple
clients before unloading the object. This allows the component to perform more business
work and to spend less time loading and unloading objects.

Remote Machine
Clignt

DCOM
Controller

Figure 12-2: DCOM Controller solution.

Microsoft recognized that for developers to be more productive, they must spend more time
developing business solutions and less time developing infrastructure. Their solution was
MTS (Microsoft Transaction Services).

MTS and COM+

MTS has matured and, with a few additional features, evolved into COM+. While the name
Microsoft Transaction Server implies that MTS is all about transactions, MTS actually does
much more than that. As such, Microsoft renamed MTS to COM+ to alleviate some of the
confusion; however, that name implies that COM+ is somehow an upgrade or new version of
COM, when in fact COM+ merely provides services to COM.

Because MTS is now outdated, the remainder of this chapter will focus on COM+.

COM+ Applications

COM+ applications are not applications in the traditional sense in that they do not contain a
user interface. COM+ applications are actually containers of components that form an
application, and the COM and .NET assembly DLLs serve as the business logic portion of the
application.

COM-+ provides a number of services to components that once required a great deal of
programming and testing from developers. Now with a simple configuration, these services
can be integrated into any application library. Table 12-1 provides a list of COM-+/Enterprise
Services.

Table 12-1: COM+/Enterprise Services.

Service Function

Application Allows COM+ applications to support pooling to promote recoverability
Pooling and scalability.

Application When application errors exceed a predefined tolerance, the Application
Recycling Recycling feature of COM+ will fix the application by shutting down and

reloading the offending process.

Compensating Allows for the integration of application resources using
Resource

Manager (CRM) Microsoft's Distributed Transaction Coordinator (MS DTS).

COM+ Events Often referred to as Loosely Coupled Events, COM+ Events offers
components a disconnected event model utilizing a publisher and
subscriber model.

Concurrency Determines the type of threading a COM+ application will subscribe to.

Context All application components receive a context by which COM+ uniquely
identifies component instances.

Just-In-Time Just-In-Time Activation promotes scalability through efficient resource
Activation (JITA) utilization. Components are not loaded until absolutely necessary and
based on predefined configurations deactivates components.

Object Pooling Components are configured to allow objects to be pooled. This component
service is available to all components. The Min and Max number of
components can be configured as well as how long components can remain

Table 12-1: COM+/Enterprise Services.
Service Function

loaded. Object Pooling reduces time wasted loading and unloading objects.

Queued Allows components to be configured for messaging by abstracting the
Components complexity of MSMQ (Microsoft Message Queue).

Security COM-+ institutes Role-Based security, thereby alleviating every
application from having to build its own security solution. Role-Based
security utilizes integrated security available to the underlying operating
system.

Shared Property ~ Allows application state to be shared between COM+ application
Manager (SPM) components.

Transaction Allows for components to participate in transactions within the same data
processing source as well as across multiple data sources with the use of the
Compensating Resource Manager (CRM).

- _0000000__]
Creating a COM+ Application

To create a new COM+ application, follow these steps. (You will make configuration changes
at the COM+ application level that will apply to all contained components.)

1. Run the Component Services application by selecting Start * Programs ¢
Administrative Tool * Component Services.

2. Expand Computers, MyComputer, and finally, COM+ Applications, as shown in
Figure 12-3. (You will see that some COM+ Applications already exist.)

= Comnpuses] Sorvices

fredowe L
& = L@ Bl & WeEmag
) Do Bl A At
-ﬁ e e e Fa -
L] Cergubers '*_? _g %? % -1?
8 v cmoun Ll QUM QL GDM Lk
| ; ror Dmacilak.,
I & &ﬁ
3"'" e 3 B Syide
v g M Uit Shadker T, Appiston

g*‘.‘.:nnui-&m
i Aoploston

| | DCOM Canfg

o) Devibetesd Trergsomon ©

Figure 12-3: Component Services Manager.

3. Click on COM+ Applications to give the folder focus, then right-click COM+
Applications and select New then Application. You should see the COM Application
installation wizard shown in Figure 12-4.

¥ielcome to the COM+ Application Install Wizard PES'

Welcome to the COM-
Application Install Wizard

Thas vezird wall heelp o b install of crozle prve appbcalior

| Ewdr: | | Cooa |

Figure 12-4: COM Application Installation Wizard.

4. Click Next. At this point, you have the option of installing a prebuilt application or a
new empty application, as shown in Figure 12-5.

Welcoma to the COM+ Application Install Wizard x
Install or Croate a Hew Application 4
Fleans choods vt pou weel 10melall & prabol Sppbcshon of creste n -__3
wimply apphcaton i

Ifgﬁ Instal poe-tult apphcstion(s]
\wr Creale an enpty apphc sion,

Cmrpeabes Wiy Computes

Figure 12-5: Dialog box with options of prebuilt or new application.

e

Select Create Empty Application.

6. Enter the new application name "Math," and leave the Activation Type set to Server
Application, as shown in Figure 12-6. This ensures that the components will load into
their own application space rather than the client's (as they do when components are
contained in a Library Application).

Walcoms to the GO+ .ﬂ.|1 |'|1im|1in|| Install Wizard

Civate Empty Applicalson J
Please gpecily ihe nams of The rew applcaon 3

Enimr & ruame fow thes reser appibcstion
]m-.

Aty plion Type

" Library apphcatior :
Comporerts vl be sciresbed in the cieabe’s oces

& Serve apphcabor
Comporerts vwill be asctivabed in & dedcated perves process,

Figure 12-6: Dialog box with options of prebuilt or new application.

7. Click Next and you should see the "Set Application Identity" wizard page, in which
you can configure the credentials that are used by components contained in this
application. Leave this option set to Interactive user for now as debugging will be
simpler; but be aware that your application's components will only be granted access
rights when someone with sufficient rights is logged on locally.

8. Click Next and then click Finish.

Congratulations! You now have an application that does nothing. (Not to worry, we will soon
remedy this.)

Building Serviced Components

Assemblies receiving services from COM+ are considered Serviced Components. The .NET
Framework allows assemblies to receive services from COM+ through classes available in the
System.EnterpriseServices namespace. (Attributes are used to implement specific COM+
Services as we'll see in the Enterprise Services example application.)

Components that receive services are called Serviced Components. For a component to
become a Serviced Component it must first inherit the ServicedComponents class available
within the System.EnterpriseServices namespace as shown below:

Imports System.EnterpriseServices

Public Class MyClass
Inherits ServicedComponents

To demonstrate Enterprise Services you'll build a wedding list application. While the wedding
list itself is incidental, it serves as a good model for demonstrating several component services
and shows you how to build an entire application.

Initially, the WeddingList will contain a client application built using Windows Forms, with
the only access to functionality through a series of layers. These layers effectively abstract the
implementation of business rules and data access away from the client. Once we've built our
basic application, we'll use Web Services to add a Fagade layer so that our application can
extend beyond the local network and across the Internet.

The initial WeddingList application model will look like Figure 12-7. As you can see, the
client can access the Business Level layer directly but has no direct access to the Data Access
layer. This is a simple, yet effective model, as the client programmer does not have to deal
with the complexity of data access and most of the data access code that would have normally
been duplicated several times is made generic enough to satisfy the needs the entire
application.

Business Laval Layer (BLL)

bl _Waddingl =l

Cata Acomes Layer (DLL)
dal Weddingl ksl

dol_Dalafcdess

Figure 12-7: The initial logcal Wedding List application model.

As you extend the WeddingList application to the Internet we will introduce a slightly
different but not insignificant application layer. The Facade layer, implemented by Web
Services, as shown Figure 12-8, allows extensibility, and makes it easy to implement and
support the application. The Fagade layer does little more than pass our requests to the
Business Level Layer. What is significant about the Fagade layer is allows the Wedding List
application components to be available across the Internet through the use of Web Services as
described in Chapter 10, "Web Services."

Business Laval Layer (BLL) Fagada (FALC)

fac WsddinglLisg

b _VweaxcainegL st

Data Acecess Laver (DLL)
. diall Vel

dal Datafooees

4

Figure 12-8: The logical WeddingList application model extending across the Internet.

The WeddingList application

While WeddingList may not require a full-blown enterprise architecture, you'll give it one to
show you how to implement an enterprise application. In the end, you'll have not only a
working application but also a model and a code library that you can use when building future
applications.

The Windows Form
To build the WeddingList, follow these steps:
1. Create a new Visual Basic .NET project using the windows Form template and name

the project "WindowsFormWeddingList".
2. Use the controls and properties listed in Table 12-2 to build the user interface.

Table 12-2: Controls, Properties, and Their Related Values for the WeddingList Application

Type Property Value
Form Name Form 1
Size 568, 396
Text Our Wedding List
Start Position Center Screen
Label Name Labell

Font Arial, 12pt, style = Bold

Table 12-2: Controls, Properties, and Their Related Values for the WeddingList Application

Type

Button

Button

ListBox

Label

Label

Label

Label

Label

Property

Location
Size
Text
Name
Location
Text
Name
Location
Text
Name
Location
Size
Font

Item Height

Name
ForeColor
Location
Size

Text
TextAlign
Name
Location
Size

Text
Name
ForeColor
Location
Size

Text
TextAlign
Name
Location
Size

Text
Name
Location
Size

Text

Value

188, 4

156, 24

Our Wedding List
btnPrintList
92,32

Print List
btnRefresh

12,32

Refresh
ListBoxWeddingList
8, 60

336, 228

Courier New 8.25
14
IbINumberlnvited
MidnightBlue
8,308

48, 23

#

TopRight

Label2

64, 308

76, 23

invited
IbINumberConfirmed
MidnightBlue
148, 308

48, 23

#

TopRight

Label4

204, 308

76,23

confirmed

Label3

356, 60

48, 23

Party:

Table 12-2: Controls, Properties, and Their Related Values for the WeddingList Application

Type

Label

TextBox

TextBox

GroupBox

Radio (Drag this control onto the GroupBox1 control)

Radio (Drag this control onto the GroupBox1 control)

Radio (Drag this control onto the GroupBox1 control)

GroupBox

Radio (Drag this control onto the GroupBox1 control)

Property

TextAlign
Name
Location
Size

Text
TextAlign
Name
BorderStyle
Location
Size
Name
BorderStyle
Location
Size
Name
Location
Size

Text
Name
Location
Size

Text
Name
Location
Size

Text
Name
Location
Size

Text
Name
Location
Size

Text
Name
Location
Size

Text

Value

TopRight
Label5

356, 80

48, 23
Guests:
TopRight
txtParty
Fixed Single
404, 56
132,20
txtGuests
Fixed Single
404, 80

28, 20
GroupBox1
352,104
200, 112
Guest of
RadioBride
16, 20

176, 24
Bride
RadioGroom
16, 48

176, 24
Groom
RadioShared
16, 76

176, 24
Shared
GroupBox2
352,220
200, 112
Status
RadioConfirmed
16, 20

176, 24
Confirmed

Table 12-2: Controls, Properties, and Their Related Values for the WeddingList Application

Type Property Value
Radio (Drag this control onto the GroupBox1 control) Name RadioUnconfirmed
Location 16, 48
Size 176, 24
Text Unconfirmed
Radio (Drag this control onto the GroupBox1 control) Name RadioDeclined
Location 16, 76
Size 176, 24
Text Declined
Button Name btnClear

Enabled False
Location 340, 336

Size 68,23
Text Clear
Button Name btnAdd

Enabled False
Location 412, 336

Size 68, 23
Text Add New
Button Name btnModify

Enabled False
Location 484, 336

Size 68,23
Text Modity
Button Name btnDelete

Enabled False
Location 12, 340

Size 72,23
Text Delete
ErrorProvider Name ErrorProviderParty

Adding Application Behavior
To build the behavior aspects of the Wedding List application, follow these steps:

1. Open the code window for Form1 and add a new region after the Form1 class
declaration.

3. Public Class Forml

4. Inherits System.Windows.Forms.Form

5. #Region " Application Behavior "

6.

7. #End Region

B e e et e et ettt ettt ettt ettt e e e e e e et e e e e e

9. Build the ClearControls procedure by placing the following code in the Application
Behavior region:

L0 e it e e e e e e e e e e et ettt ettt e e et ettt e e e e,

11. Private Sub ClearControls ()

12. 'Clears all text fields and disables selected button controls.

13. txtParty.Text = ""

14. txtGuests.Text = ""

15. RadioBride.Checked = False

16. RadioGroom.Checked = False

17. RadioShared.Checked = False

18. RadioConfirmed.Checked = False

19. RadioUnconfirmed.Checked = False

20. RadioDeclined.Checked = False

21. btnDelete.Enabled = False

22. btnClear.Enabled = False

23. btnModify.Enabled = False

24. btnAdd.Enabled = False

25. End Sub

X

27. Add the code that's listed in Table 12-3 behind the button controls.

Table 12-3: Code for Button Controls

Button Control Code
btnClear (click event) 'Clears controls
ClearControls()
btnDelete (click event) '"TODO: Remove selected items from database.

'"TODO: Run a refresh sub procedure.
'Clears controls
ClearControls()

btnAdd (click event) '"TODO: Add the new record to the database.
'"TODO: Run a refresh sub procedure.
'Clears controls
ClearControls()

btnModify (click event) "TODO: Modifies the selected record.
'"TODO: Run a refresh sub procedure.
'Clears controls
ClearControls()

Table 12-3: Code for Button Controls

Button Control Code

btnRefresh (click event) '"TODO: Run a refresh sub procedure.
'Clears controls
ClearControls()

31. Place the following code behind the double-click event of the ListBoxWeddingList

control:
2
33. 'TODO: Pull data based on selected item and place into
34. 'edit the controls.
35
36. 'Clears controls
37. ClearControls()
38. btnModify.Enabled = True
39. btnClear.Enabled = True
40. btnDelete.Enabled = True

T
44, 'Checking to see if a modification is already occurring.

45. If btnModify.Enabled = False Then

46. btnAdd.Enabled = True

47. btnClear.Enabled = True

48. End If

L

Creating the Database

In Chapter 9, "Retrieving Data," you performed the database tasks using Enterprise Manager.
While many developers will continue using Enterprise Manager their first choice, you will
build the database for this example using Visual Studio .NET. (The exercise will show how
Visual Studio .NET database tools work.)

To create the database, follow these steps:

1. Using Server Explorer, expand Servers then your machine's name. Expand SQL
Servers, and finally your SQL Server.

2. Right-click on your SQL Server's name and select New Database.

Enter WeddingList as the New Database Name.

4. Select either Integrated Security or SQL Server Authentication. This is used to supply
rights to create the new database.

(98]

Note If you are unsure, select SQL Server authentication using the user id sa and its
related password (for testing purposes only) .You can also create a new SQL
Server user id and password (the safer option).

5. Expand the new database, right-click on Tables, and select New Table.

6. Add the following column information to the new table (Table 12-4):

Table 12-4: Column Information

Column Name Data Type Length Allow Nulls

ID int 4 Deselect checkbox
Change the Identity attribute of the ID column in the matrix below to "yes".
Party varchar 23 Deselect checkbox
Guests int 4 Deselect checkbox

Change the Default Value attribute of the Guests column to "1"

GuestOf char 1 Deselect checkbox

Change the Default Value of the GuestOf column to "*S’".

Status char 1 Deselect checkbox

Change the Default Value of the Status column to "‘U’".

CreateDate datetime 8 Deselect checkbox

Change the Default Value of the CreateDate column to "GetDate()".

ModifyDate datetime 8 Leave checkbox selected

10. Click the Save icon.
11. Enter "PartyList" as the table's name.

You will notice that the interface (Figure 12-9) is not much different than the Enterprise

Manager interface that you used in previous chapters.

S [o= [romd QJud QOetag Gera (e frder g

Bro-sE@@P ilan - wo Jls | b bebag = | g e rpEe o
L 7 (=R N,
B o Partplind) Wkt | o |
Sk M | Esia Tags | Lo | i bidks | EN =1
':‘ LE W : -
I " I e
s s T
LI T L ¥ g
e cere et "
L T v o 5 a *
Chow | . s :
&
[X F
I 3.9
—— - bt 3 %]
Tadk Lo - Bl Dvew g o P T] s .-.-.-L-: =
e e o EHEs
=T
Bl Cuigad

Figure 12-9: End result of building the PartyList table schema.

Adding Test Data

Before you can test the sample application, you need test data. Follow the steps below to add
test data:

1. Expand the Tables icon and double click the PartyList table icon.
2. Add the values in Table 12-5 for testing purposes. When finished, your screen should
look like Figure 12-10.

Table 12-5: Values of Test Data

ID Party Guests GuestOf Status Create Modify
Mike Browning 5 G C
David Hill 4 B C
Jeff Dunaway 3 G C
William Bennethum 2 G C
Dale Campfield 4 G U
Annette Retter 3 S U
Lee Brown 2 S U
David Pledger 2 S U
Keith Stafford 2 S U
Bill Potter 2 S U
Kenn Schribner 2 S U
Rob Schneidler 2 G U
Bob Yexely 2 G U
Steve Austin 2 G U
Don Smith 2 G U

" wall i el Mt abuiriae [derigin] . oAb
Bl Bl e Bobed Bl Oebay feteies foey Teck fdes Hey
P-O-Fud LR - F R e

K E Y.

[| i

IMECEEEESE S MA

(TR TR ——
v [e .

Bl St
e

Figure 12-10: Results of entering data.

Creating the Supporting Stored Procedures

You'll implement data access through SQL Server stored procedures to improve performance
and to add XML support. You'll pass all of the stored procedure parameters in a single XML
string. This will allow the application to process multiple data requests significantly faster
because a single call can now perform the same work that once required multiple database
calls. Also, your dependency on interface compatibility in the component layers is
significantly reduced when adding and removing columns and parameters.

You will build the following stored procedures:

e wl AddParty isp

e wl DeleteParty dsp

e wl GetConfirmed ssp

e wl Getlnvited ssp

e wl GetPartyList ssp

o wl GetPartyListDetail ssp
e wl UpdateParty usp

The naming convention that is used for the stored procedures is a prefix that represents the
application "w1" for WeddingList, followed by the action it performs, and then the type of
data access as represented by ssp (Select stored procedure), isp (Insert stored procedure),
usp (Update stored procedure), and dsp (Delete stored procedure).

If you are dealing with a larger application with dozens, hundreds, or even thousands of stored
procedures, consider placing that application area before the action. For instance, if you were
to build a select stored procedure for Sales, you might use the stored procedure name,

wl SalesGetPartyList ssp. Using this naming convention will allow the stored procedures
to sort by application and then application section, making it much easier to work with stored
procedures in a medium to large application.

The wl_GetPartyList _ssp Stored Procedure

The first task of the sample application is to display a party list. The following stored
procedure accepts no parameters because you simply want all items in the list. You will notice
that the returned data is preformatted before the client application receives it. The added
formatting allows the data to be displayed cleanly:

1. Right-click on the Stored Procedures icon under the WeddingList database in the
Server Explorer.

2. Select New Stored Procedure.

3. Replace everything in the New Stored Procedure window with the following T-SQL

(Transact SQL) code:
A e e e e e e e ettt e et e e e e e e
5. CREATE PROCEDURE dbo.wl GetPartyList ssp
6. AS
7. -- Returns all Parties with an ID and data for display in
8. -- a list control.
9. SELECT ID, CASE WHEN Party IS NULL THEN SPACE (22)

10.

11.
12.
13.

14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.

ELSE REPLACE (REPLACE (REPLACE (LEFT (Party + SPACE(23), 23), '\',
"\, T, N,), "\) END

+ SPACE (1)

+ CASE WHEN Guests IS NULL THEN SPACE(0)

ELSE REPLACE (REPLACE (REPLACE (LEFT (Guests + SPACE(1), 1), '\',
"\, T, N,), "\) END

+ SPACE (1)

+ CASE WHEN GuestOf IS NULL THEN SPACE (5)
WHEN GuestOf = 'S' THEN 'Shared'

WHEN GuestOf = 'G' THEN 'Groom '

WHEN GuestOf = 'B' THEN 'Bride '

ELSE REPLACE (REPLACE (REPLACE (LEFT (GuestOf + SPACE(6), 6), '\',
"\, T, N,)Y, "\)) END

+ SPACE (1)

+ CASE WHEN Status IS NULL THEN SPACE (10)

WHEN Status = 'C' THEN 'Confirmed '

WHEN Status = 'U' THEN 'Unconfirmed'

WHEN Status = 'D' Then 'Declined '

ELSE REPLACE (REPLACE (REPLACE (LEFT (Status + SPACE(11), 11), '\',
NN, T, N (), Y)Y, "\) ') END

AS PartyList
FROM PartyList
ORDER BY Party
Return

Click Save. You will not be prompted for the stored procedure name as it is already
provided as part of the CREATE PROCEDURE statement.

Note Notice that after saving the stored procedure that the CREATE PROCEDURE statement has
been change to ALTER PROCEDURE.

5.

To test the stored procedure, right-click in the stored procedure window and select
Run Stored Procedure. (You may also run any stored procedure in the stored
procedure list by right-clicking the specific stored procedure and selecting Run Stored
Procedure.) The results of the stored procedure will be displayed in the Output
Window, as shown in Figure 12-11.

ﬁu".n!ng dha. "wl .‘.-'F'AT'.:, fst ssp”.

1o

1
A

Partylist

Annette Retter 2 Shared Confirmed
Bill O*Reilly ? Shared Uncomfimmed
Bill Fotter 2 Smared Uncomfineed
Bob Yexely 2 Groom Unconfimmed
bale Campfield 4 Grocm \Unconfireed
David Hill 4 Bride Confirmed
David Fledger ? Shared Unconfimmed
bon Smith ¥ Groom Unconfireed
Jeffery Dunawdy 3 Groem Confirmed
Kenn Scribner ? Shared Unconfimmed
Lee Brown 1 Shared Uncomfimmed
Mike Erowning 5 Groom Confirmed
Fhil Keaggy ? Groom Uncomfimmed
Eob Schneldler 2 Lrocm Uncoatlreed
Steve Bustin 2 Groom Unconfirsed
Vidia Baldeosingh ? Bride Confirmed
Willias Bennethum 2 Groem Coafimmed

Ko mare results.

(17 row(s) Teturned)
FEETURK_WALUE = O
Finished running dbo."wl CetPartylist ssp®.

Figure 12-11: Expected results of running the stored procedure.
Note If the stored procedure requires parameters, they are requested before the output is
displayed.

The w1_getPartyListDetail_ssp Stored Procedure

When a party list item is selected, the w1 GetPartyListDetail ssp returns the detail of the
party item, allowing for a closer inspection and updating of the selected item.

1.
2.

[l el P O o Jo U w
Sw N = O e o o e e e .

N e
© v wJo WU

N NN
w N -

N
D

Right-click on the Stored Procedures icon and select New Stored Procedure.
Replace all the code in the New Stored Procedure code window with the following
code:

CREATE PROCEDURE dbo.wl GetPartyListDetail ssp

@xmldoc NTEXT

AS

DECLARE @idoc INT

--Create an internal representation of the XML document.
EXEC sp xml preparedocument @idoc OUTPUT, @xmldoc

. SELECT PartyList.ID, PartylList.Party, PartyList.Guests,
PartyList.GuestOf,

PartyList.Status

FROM OPENXML (@idoc, 'Parties/Party', 2) with

(id int 'ID')XMLSelect, PartyList

WHERE PartyList.ID = XMLSelect.ID

-- remove the XML document from memory

EXEC sp xml removedocument @idoc

/*

The advantage of using XML in a stored procedure that you only

plan on passing a sinlge parameter, as we plan on using this

stored procedure, is the flexability to pass in multiple Pary IDs

to return detail information about multiple parties. For instance,

you may wish you allow the user to select multiple items in a
listbox

and return the details for all.

25. <Parties>

26. <Party>

27. <ID>1</ID>

28. </Party>

29. <Party>

30. <ID>2</1D>

31. </Party>

32. </Parties>

33. */

T

35. Click Save.
36. Test the new stored procedure as you did the previous stored procedure (Figurel12-12).

Hun stored proscedore

The: stored procedune <dbo,"vi_GetPartylistDetal_ssp™ > requines the follosang

paraetars:
Type |Dirsction | Msme | Vahos
rvarchar In @rxmidoc e -

E i I Cancel I Help 1

Figure 12-12: Prompting for stored procedure parameters.

37. Supply the Value to be passed to the stored procedure and press OK (Figure 12-13).

Eunning dbo.“wl_GetPartylistDetall ssp” [dhaomldoc
cPartiesy cPartye< 105/ 0/ Fartye </ Fartiesy .

g Dale CampField 4 G u
Mo moTe Tesults.

{1 row(s) returned)

@RETLURN YALUE = O

Finished running dbo. 'h']_-:.MFthgl 1sthetal !_qip'.

Figure 12-13: Expected results of running the stored procedure with the XML string.

Note Because you are passing XML strings to the stored procedures, you will need to supply
the values in the form of a XML string. Each stored procedure has an example of this
XML string commented out at the end of the T-SQL script, such as
<Parties><Party><ID>5</ID></Party></Parties>.

The wl_AddParty_isp

Earlier, you learned some of the advantages of using XML to pass parameters between
application layers. Doing so reduces interface dependence. Another advantage of using XML
is the ability to place multiple sets of data within the same XML string.

Your application will only pass one party as XML to the w1 Addparty isp. However,
because the stored procedure will process a XML string, you can process a bulk of inserts in a
single database call. (The design of the previous stored procedure wasn't covered because it

only accepted a single parameter; however, this stored procedure and XML string format is a
little more complex and deserves your attention.)

First, you need to identify the XML document that the stored procedure will process. (Keep in
mind that the stored procedure is case sensitive when dealing with XML.) You'll build the
stored procedure to accept XML documents that follow this format:

<Parties>
<Party>
<PartyName></PartyName>
<Guests></Guests>
<GuestOf></GuestOf>
<Status></Status>
</Party>
</Parties>

To build the stored procedure, follow these steps:

1. Right-click on Stored Procedures and select New Stored Procedure.
2. Replace all the code in the New Stored Procedure code window with the following T-
SQL code:

4 CREATE PROCEDURE dbo.wl_AddParty_isp
5. @xmldoc Ntext

6. AS

7 DECLARE @idoc INT

38

9. --Create an internal representation of the XML document.

10. EXEC sp xml preparedocument @idoc OUTPUT, @xmldoc

11.

12. INSERT PartyList (Party, Guests, GuestOf, Status)

13.

14. SELECT Party, CASE WHEN Guests = '' THEN 1 ELSE Guests END ,
15. CASE WHEN GuestOf = '' THEN 'S' ELSE GuestOf END,
16. CASE WHEN Status = '' THEN 'U' ELSE Status END
17. FROM OPENXML (@idoc, 'Parties/Party', 2) WITH

18. (Party Varchar (23) 'PartyName',
19. Guests Int 'Guests',
20. GuestOf Char (1) 'GuestOf',
21. Status Char (1) 'Status')
22.

23. -- remove the XML document from memory

24. EXEC sp_xml removedocument @idoc

25. /*

26.

27. <Parties>

28. <Party>

29. <PartyName></PartyName>

30. <Guests></Guests>

31. <GuestOf></GuestOf>

32. <Status></Status>

33. </Party>

34, </Parties>

35. */
36.
e

38. Click Save.

Note At times, Visual Studio .NET seems to be unable to save the stored procedure to SQL
Server. This doesn't always mean that there is actually anything wrong with your stored
procedure. If you run into this problem, use SQL Server Enterprise Manager to create
the stored procedure.

The wl_UpdateParty usp Stored Procedure

The w1 UpdateParty usp stored procedure updates the detailed party information. Build the
wl UpdateParty usp stored procedure using the following T-SQL:

CREATE PROCEDURE dbo.wl UpdateParty usp

@xmldoc NTEXT

AS

DECLARE @idoc INT

--Create an internal representation of the XML document.
EXEC sp xml preparedocument @idoc OUTPUT, @xmldoc

UPDATE PartylList

SET Party = XMLUpdate.PartyName,
Guests = CASE WHEN XMLUpdate.Guests = '' THEN 1
ELSE XMLUpdate.Guests END,
GuestOf = CASE WHEN XMLUpdate.GuestOf
ELSE XMLUpdate.GuestOf END ,
Status = CASE WHEN XMLUpdate.Status = '' THEN 'U'
ELSE XMLUpdate.Status END

'' THEN 'S'

FROM OPENXML (Q@idoc, 'Parties/Party', 2) WITH

(PartyID int 'ID',

PartyName Varchar (20) 'PartyName',

Guests Varchar (20) 'Guests',

GuestOf Varchar (20) 'GuestOf',

Status Varchar (20) 'Status’',

SName Varchar (50) 'SpouseName ') XMLUpdate, PartyList

WHERE PartyList.id = XMLUpdate.PartyID
-- remove the XML document from memory
EXEC sp xml removedocument @idoc
/*
<Parties>
<Party>
<ID></ID>
<PartyName></PartyName>
<Guests></Guests>
<GuestOf></GuestOf>
<Status></Status>
</Party>
</Parties>
*/

The wl_DeleteParty dsp Stored Procedure

The w1 DeleteParty dsp stored procedure receives an XML document that contains one or
more party ids. After it receives them, the stored procedure will iterate through the list of ids
and remove them from the database. Build the w1l DeleteParty dsp stored procedure using
the following T-SQL:

CREATE PROCEDURE dbo.wl DeleteParty dsp

@xmldoc NTEXT

AS

DECLARE @idoc INT

--Create an internal representation of the XML document.
EXEC sp xml preparedocument @idoc OUTPUT, @xmldoc

DELETE PartyList

FROM OPENXML (Q@idoc, 'Parties/Party', 2) WITH
(PartyID int 'ID')XMLDelete, PartyList

WHERE PartyList.id = XMLDelete.PartyID

-- remove the XML document from memory

EXEC sp xml removedocument @idoc

/*

<Parties>
<Party>
<ID></ID>
</Party>
</Parties>
*/

The wl_GetlInvited ssp Stored Procedure

Build the w1 GetInvited ssp stored procedure using the following T-SQL:

CREATE PROCEDURE dbo.wl GetInvited ssp
AS
SELECT SUM(Guests) FROM Partylist

The wl_GetComfirmed_ssp Stored Procedure

The w1 GetComfirmed ssp stored procedure is a simple stored procedure that does not
accept parameters and returns all confirmed parties as indicated by a status of "C". Build the
wl GetInvited ssp stored procedure using the following T-SQL:

CREATE PROCEDURE dbo.wl GetConfirmed ssp
AS
SELECT SUM(Guests) FROM Partylist WHERE Status = 'C'

The Middle-Tier Components

Now you are ready to build the middle-tier components that will serve intially as class
libraries to the Windows Form client application. You'll test the components with the client to
ensure that everything is working according to design, after which you'll implement Serviced
Component attributes and deploy to a COM+ application. Finally, you'll implement web
services to expose the application to other platforms (although you'll first need to modify the
client to perform its function through your newly created web services).

The dal_DataAccess component

You will be implementing all data access through XML and stored procedures. There are two
reasons for this:

Passing all parameters as a single XML string reduces interface dependence so when
adding columns to a table or passing additional parameters, there is no need to be
concerned with class interfaces. No matter how many parameters are to be passed, as
long as they are passed in the XML string, the XML string will occupy only a single
parameter of the interface.

Using a XML string to hold parameters brings increased flexibility and a significant
increase in performance. When inserting, updating, and deleting multiple records, you
would, in the past, have to make multiple calls to the database. Passing all inserts,
updates, or deletes in a single XML string allows for multiple data updates in a single
database call because a single XML string can hold multiple sets of records that can be
processed by SQL Server. When considering that, connecting to a data source and
running a stored procedure often takes longer than the intended data request or
modification.

Go ahead and create the dal Dataaccess component by following these steps:

1.

2.

Create a new Visual Basic .NET project using the class Library template and name
the project WeddingList.

Rename the c1ass1.vb file to dal DataAccess.vb.

Open the code window for the dal DataAccess.vb and rename the Class1 class to
dal DataAccess.

Note While you can place more than one class into each file, your code will tend to be
more organized if you use a separate file for each new class.

Import the appropriate namespace for SQL Server:

Public Sub XML ModifyDataSource (ByVal strSP As String,

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.

42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.

54.
55.
56.
57.

58.
59.
60.
61.
62.
63.
64.
65.
66.

ByVal strXML As String)

'Generic procedure that accept a SP name and XML string.
Dim strConn As String = _
"Data Source=localhost;Initial Catalog=WeddingList" & _
";User Id=sa;Pwd=;"

Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()

Dim objParamID As New SglParameter ("@xmldoc",

SglDbType.NText)

objParamID.Direction = ParameterDirection.Input
objParamID.Value = strXML

objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText = strSP
objCmd.Parameters.Add (objParamID)

objCmd.Connection = objConn
objCmd.Connection.Open ()

objCmd.ExecuteNonQuery ()

objCmd.Connection.Close ()

End Sub

Public Function XML GetDataSet (ByVal strSP As String,

ByVal strDataTable As String,

As

Optional ByVal strXML As String

"")

DataSet

'Generic procedure for returning a DataSet
Dim strConn As String = _
"Data Source=localhost;Initial Catalog=WeddingList" &
";User Id=sa;Pwd=;"

Dim objConn As New SglConnection (strConn)
Dim objCmd As New SglCommand ()
Dim objDataAdapter As New SqglDataAdapter ()
Dim objDataSet As New DataSet ()

'Notice that the parameter is of type "NText". This should

'much larger than anything you may need to use thereby not
'limiting the size of the XML document that can be passed.

If strXML <> "" Then
Dim objParamID As New SglParameter ("@xmldoc",

SglDbType.NText)

objParamID.Direction = ParameterDirection.Input
objParamID.Value = strXML
objCmd.Parameters.Add (objParamID)

End If

objCmd.CommandType = CommandType.StoredProcedure
objCmd.CommandText StrSP

objCmd.Connection = objConn

67. objCmd.Connection.Open ()

68.

69. objDataAdapter.SelectCommand = objCmd

70. objDataAdapter.Fill (objDataSet, strDataTable)

71.

72. objCmd.Connection.Close ()

73.

74. Return objDataSet

75.

76. End Function

2

Note The xML_ModifyDataSource function accepts the stored procedure name and the XML
document, describing the data to be modified. Normally, you would return success or
failure information of a transaction. You would also expect to pass in the connection
string to make your code more general and usable by other applications. To save time,
you will implement the method as a sub-procedure, returning nothing, and hard code the
connection string.

The dal_WeddingList class

The dal weddingList class is the only class that communicates with the dal Dataaccess
class directly. The dal weddingList class abstracts all data access knowledge from upstream
components thereby abstracting all data access knowledge. To build it, follow these steps:

1. Add anew class file to your project named dal WeddingList.
2. Import the SQL Server client namespace:
3.

ISy
i
3
o)
o]
=
o
0}
)
=
0]
o
0]
3
o
]
o
[}
)
Q
i
@]
=
-
0]
=}
o

8. Public Function GetPartyList () As DataSet

9. 'Call generic code to run sp passing the sp

10. 'name and connection string.

11. 'This method will return a DataSet.

12. Dim objDataAccess As New WeddingList.dal DataAccess|()

13. Dim objDataSet As New DataSet ()

14. objDataSet =
objDataAccess.XML GetDataSet ("wl GetPartyList ssp",

15.
"PartyListForListBox")

16. Return objDataSet

17. End Function

18.

19. Public Function GetInvited() As DataSet

20. Dim objDataAccess As New WeddingList.dal DataAccess ()

21. Dim objDataSet As New DataSet ()

22. objDataSet = objDataAccess.XML GetDataSet ("wl GetInvited ssp",
"Invited")

23. Return objDataSet

24. End Function

25.

26. Public Function GetConfirmed() As DataSet
27. Dim objDataAccess As New WeddingList.dal DataAccess|()

28.
29.

30.
31.
32.
33.
34.

35.

36.
37.
38.
39.

40.

41.
42.
43.
44,
45.

46.
47 .
48.
49.
50.
51.

52.
53.

54.
55.
56.
57.

58.
59.

60.
61.

Dim objDataSet As New DataSet ()
objDataSet =
objDataAccess.XML GetDataSet ("wl GetConfirmed ssp",
"Confirmed")
Return objDataSet
End Function

Public Function GetPartyListDetail (ByVal strXML As String) As
DataSet
'Call generic code to run sp passing the sp name and connection
string.
'This method will return a DataSet.
Dim objDataAccess As New WeddingList.dal DataAccess ()
Dim objDataSet As New DataSet ()
objDataSet =
objDataAccess.XML GetDataSet ("wl GetPartyListDetail ssp",
"PartyListDetail",
strXML)
Return objDataSet
End Function

Public Sub AddParty(ByVal strXML As String)
'Call generic code to run sp passing the sp name and connection
string.
Dim objDataAccess As New WeddingList.dal DataAccess|()
objDataAccess.XML ModifyDataSource ("wl AddParty isp", strXML)
End Sub

Public Sub UpdateParty(ByVal strXML As String)
'Call generic code to run sp passing the sp name and connection
string.
Dim objDataAccess As New WeddingList.dal DataAccess ()
objDataAccess.XML ModifyDataSource ("wl UpdateParty usp",
strXML)
End Sub

Public Sub DeleteParty(ByVal strXML As String)
'Call generic code to run sp passing the sp name and connection
string.
Dim objDataAccess As New WeddingList.dal DataAccess|()
objDataAccess.XML ModifyDataSource ("wl DeleteParty dsp",
strXML)
End Sub

The bll_WeddingList class

The b11 weddingList class is the layer that clients of the same platform access; the layer
also provides all business logic. You will not perform any business logic here because it does
not promote the demonstration of service components. However, when you are building your
own application, this is where you would add your business logic. You will need the
assistance of NET XML classes that the .NET Framework provides to implement business
logic here.

To build this class, follow these steps:

1.

Add a new class library file named b11 WeddingList to the project.

54.
55.
56.
57.
58.
59.
60.

Add the following code including the import:

Public Function GetPartyList () As DataSet
' In addition to getting the Partylist we are returning two
' other DataTables for Invited and Confirmed guests. This is an
' effort to reduce the number of client calls by packing
' 3 calls in the form of DataTables into a single DataSet.

' This implementation performs the following actions:

' 1. Set a temp DataSet equal to the returned DataSet

' 2. Making a reference to the returned DataTable

' 3. Remove the returned DataTable from the returned DataSet
' 4. Add the referenced DataTable to the DataSet to be

' returned to the client.

Dim objDataSet As New DataSet ()

Dim objTempDS As New DataSet ()

Dim objDataTable As New DataTable ()

Dim obj daa WeddingList As New WeddingList.dal WeddingList ()

objTempDS = obj daa WeddingList.GetPartyList
objDataTable = objTempDS.Tables (0)
objTempDS.Tables.Remove (objDataTable)
objDataSet.Tables.Add (objDataTable)

objTempDS = obj daa WeddingList.GetInvited
objDataTable = objTempDS.Tables (0)
objTempDS.Tables.Remove (objDataTable)
objDataSet.Tables.Add (objDataTable)

objTempDS = obj daa WeddingList.GetConfirmed
objDataTable = objTempDS.Tables (0)
objTempDS.Tables.Remove (objDataTable)
objDataSet.Tables.Add (objDataTable)

' This implementation will also work; however, it copies

' the DataTable returned in the DataSet to our DataTable.

' This means that not only is the data copies but for a

' brief time the DataTable exists in memory twice. As my

' friend, Vince, pointed out, this solution works but is not
' not necessary so I opted to use the solution shown above.

'objDataTable = obj daa WeddingList.GetPartyList.Tables (0) .Copy
'objDataSet.Tables.Add (objDataTable)
'objDataTable = obj daa WeddingList.GetInvited.Tables (0) .Copy
'objDataSet.Tables.Add (objDataTable)
'objDataTable = obj daa WeddingList.GetConfirmed.Tables (0) .Copy
'objDataSet.Tables.Add (objDataTable)
Return objDataSet

End Function

Public Function GetPartyListDetail (ByVal strXML As String) As
DataSet
Dim obj daa WeddingList As New WeddingList.dal WeddingList ()
Dim objDataSet As DataSet
objDataSet = obj daa WeddingList.GetPartyListDetail (strXML)
Return objDataSet
End Function

Public Sub AddParty(ByVal strXML As String)

61. Dim obj daa WeddingList As New WeddingList.dal WeddingList ()

62. obj daa WeddingList.AddParty (strXML)

63. End Sub

64.

65. Public Sub UpdateParty (ByVal strXML As String)

66. Dim obj daa WeddingList As New WeddingList.dal WeddingList ()
67. obj daa WeddingList.UpdateParty (strXML)

68. End Sub

69.

70. Public Sub DeleteParty(ByVal strXML As String)

71. Dim obj daa WeddingList As New WeddingList.dal WeddingList ()
72. obj daa WeddingList.DeleteParty (strXML)

73. End Sub

T e e e e e e e e e e e e

75. Open the AssemblyInfo.vb files code window and modify the assembly attributes.
(Most of this code will be automatically generated by the Visual Studio .NET IDE.)
Make sure you go through each line and verify that each attribute is represented and
properly configured in your AssemblyInfo.vb file. Specifically, verify that the
AssemblyVersion attribute is 1.0.0.1. Correctly configuring these attributes aids in
the identification of your assembly. The Guid in your assembly will be generated by
the Visual Studio .NET IDE and does not need to match the Guid value in the
following code.

Note It seems that the Visual Studio .NET IDE configures the Assemblyversion attribute so that it automati
increments with each compile, forcing you to recompile your clients. You might question why Microso
has done it this way, but please make it your first step to change the Assemblyversion to the desired
version when you're building assemblies.

Imports System.Reflection

Imports System.Runtime.InteropServices
' General Information about an assembly is controlled through the following
' set of attributes. Change these attribute values to modify the information
' associated with an assembly.

' Review the values of the assembly attributes

<Assembly: AssemblyTitle ("WeddingList")>

<Assembly: AssemblyDescription ("The Wedding List Sample Application.")>
<Assembly: AssemblyCompany ("The Book of Visual Studio .NET")>
<Assembly: AssemblyProduct ("WeddingList")>

<Assembly: AssemblyCopyright ("")>

<Assembly: AssemblyTrademark("")>

<Assembly: CLSCompliant (True)>

'The following GUID is for the ID of the typelib if this project is exposed to COM
<Assembly: Guid("738266B8-541A-4BO9F-ABD3-91677DEQ7F84") >

' Version information for an assembly consists of the following four values:

' Major Version
' Minor Version
' Build Number
' Revision

' You can specify all the values or you can default the Build and Revision Numbers

' by using the '*' as shown below:
<Assembly: AssemblyVersion("1.0.0.1")>

Adding the WeddingList Objects to the GAC (Global Assembly
Cache)

Unlike classic COM, assemblies do not register their location or interfaces. This impacts how
you reference assemblies in two significant ways. First, all of an application's components do
not need to be registered with any system. All metadata concerning a component's interface
are stored within the component and the metadata's location is not important because it exists
within the calling application.

Second, if you want your component to be made available to other applications it must be
added to the GAC (Global Assembly Cache). In this example, you do. There are three ways to
do so. One is GUI-based and the other two are implemented using the command line.
However, before you can use either option, you must make sure that the component is unique
to the machine because it will be exposed to all applications of the machine once it is added to
the GAC. To uniquely identify a component, give it a strong name:

1. Run the Visual Studio .NET Command Prompt by selecting Start « Programs ¢
Microsoft Visual Studio .NET ¢ Visual Studio .NET Tools and finally Visual Studio

NET Command Prompt.
2. Navigate to you projects directory and type the following command:
B e e e e e e e e e e e e e e e e e
4. 'sn -k KeyPair.snk
5. Exit
2P

This creates a public/private key pair that will be used by the Visual Studio .NET IDE
to give your component a strong name. Also, note that you created our KeyPair.snk
file in the projects directory. This is because the Visual Basic compiler looks in the
project directory by default. C#, on the other hand, looks for the same file in the bin
directory or where ever the assembly is created.

7. Open up the Assemblylnfo.vb files code window and add the following Assembly

attribute.
e
9. <Assembly: AssemblyKeyFile ("KeyPair.snk")>
L0 . et e e e e e e e e ettt e e e e

Note The strong name public/private key pair is case-sensitive so keep that in mind when
adding the assembly name to the AssemblyKeyFile attribute.

4. Compile the project. At this point we are ready to add our components to the GAC.
Note For some reason there are times when the compiler doesn't see the keyPair.snk file.

When this occurs, shutting down the project and reloading it seems to alleviate this
problem. (Hopefully, a fix will be included in an upcoming service pack.) The problem

seems to occur when the keypair.snk file, which can have any name you desire, is
created while the project is open.

Option 1: Using the .NET Framework Configuration Tool

You will use the .NET Framework Configuration console to add the assembly to the Global
Assembly Cache:

1. Open the .NET Framework Configuration Tool by selecting Start « Programs
Administrative Tools * Microsoft NET Framework Configuration. You should see the
NET Framework Configuration screen that appears in Figure 12-14.

B = e e |

H‘m\‘._ SET Frommermeark Condigaration

a1
Enll.'r-';'.&wll . e SR AT Wl o 10 COPRGUEE BIERThEET, fEEL D REnCeE
e v code acoes seoty sokcy
L SN B
T aghs

g T Al Cadw
Frak kbl D i S s A R R T D8 b b el
AplLatars g e areebly e W v, sk, @l Pewove T i oeegorenis
Tt e il o el COTERARE

L U Al
Eonfipiall sl e e sl of swriie o e maenbly care Ba have an
g ol o e Tres eyl o god e sk s gion of T il g
i e o Caeon vl 10 s T sy,

(it . s v
Fra Do Lawan(el Firieey e O SO0 B0 T I TRV PO O
] i p i BTy e e b, 0 vl] e g o
[t oy ERony R ks e aseenln orgn and suhor,

LT g &
AN Tl P S b FTOD W D0 D 1D e s OOt 000 T A
Lo sot Bl Slee g o8

oo B el A o
iy oo s L o g 1 w27 Lo yparwnd v Lolam a0 d - et e

Figure 12-14: The .NET Framework Configuration console.

2. Select Assembly Cache (Figure 12-15). Select View List of Assemblies in the
Assembly Cache to view all assemblies in the GAC.

b Foen s Epp

“;t’,ﬂf_‘_.,._ Im:ﬂ

4l e Dby

o B L The Adamily Sachs contang the e oF atsamblad bealaiie to ol applicasion
Ll Eartien iyt pin tareteg e M T Framewsrk, Stk verise of 1he i ariiensly can B8
[s g Flitwd © b abie bl CarkE. THE S55w Bem appleat v 18 BErasly et 8
San i By el S wariaes BT 1hE e Shared sdtamiey;
Tanks

T oxggin o Bl o sl s e mserridy cactm

A i e B e e el Db
Thl erpeas i et o0 B tadhe. ARer P Rkl R Seen el Ba
L e s e e S

F srow the Holp 1opc by deilsdl.
VU G L The Vi ey Do Poggie tebwwen P Help o @ the st s,

Figure 12-15: The Assembly Cache tasks page.

(O8]

Right-click on the Assembly Cache icon and select Add.
4. Navigate to the weddingList.dl1 file in the Bin directory of the project and select
Open.

Note If you have not given your component a strong name, you will immediately receive an
error indicating that your assembly cannot be added because it does not have a strong
name. Makes sense doesn't it? This is a common mistake. It occurs when you forget to
add to the AssemblyKeyFile attribute after you've generated the KeyPair.snk file and
then compile the project.

5. Press OK.
Option 2: Using the gacutil.exe utility

Adding an assembly to the GAC using the gacutil.exe command is the same as using the
Microsoft .NET Framework Configuration Tool in terms of creating a strong name and
adding the attribute clause to the projects AssemblyInfo.vb. To add an assembly, open a
command prompt and replace the use of the Microsoft NET Framework Configuration Tool
with the following:

You may need to use gacutil.exe to remove the WeddingList.d11 from the GAC before
you can add it.

To remove the assembly, right-click it and select remove from the Microsoft NET
Framework Configuration Tool or type

at the command prompt.
Attaching the Client to the Assembly
To make our Windows Form project aware of the components we've built, follow these steps:

1. Open the WindowsFormWeddingList solution.

2. Right-click on References in the Solution Explorer window and select Add Reference.

3. Select the Browse button and navigate to the weddingList.d11 file and press Open
then OK.

Now you have a reference to the assembly. For now, these components will be loaded in-
process and not in COM+. Once you are satisfied that everything is functioning properly, you
will move the assembly into COM+ where the components will run out-of-process.

Adding Functionality to the Client

References to our newly created assembly are great, but without functionality in the client to
make use of the references, they are of no use. In this section, you will add functionality that
will dictate the client's behavior as well as make use of the referenced assembly:

N —

~ o O b W

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.

29.
30.
31.

33.

34.
35.
36.
37.
38.
39.

Open the code window for Form1 and add the following insert statements.

Imports System.Data.SglClient
Imports System.Text

Imports System.EnterpriseServices
Imports System.Net

The rRefreshLish () method will be used whenever data is modified or the Refresh
button is pressed. This method refreshes the ListBoxWeddingList control, populates
the number of invited guests, and tells us the number of confirmed guests.

Add the following code to the Form1 Class:

Private Sub RefreshList ()
'ListBoxWeddingList
Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objDataSet As New DataSet ()
Dim objDataTable As New DataTable ()
Try
objDataSet = obj bll WeddingList.GetPartyList
Catch e As Exception
MessageBox.Show (e.ToString)
Exit Sub
End Try
objDataTable = objDataSet.Tables ("PartyListForListBox")

ListBoxWeddingList.DataSource = objDataTable
ListBoxWeddingList.DisplayMember = "PartyList"
ListBoxWeddingList.ValueMember = "ID"

1blNumberInvited.Text =
objDataSet.Tables ("Invited") .Rows (0) .Item(0)

1blNumberConfirmed.Text =
objDataSet.Tables ("Confirmed") .Rows (0) .Item(0)

End Sub

Forml Load
btnDelete Click
btnAdd Click
btnModify Click
btnRefresh Click

Note These methods may not be readily available. Simply double-click each corresponding button within the
form to get the click event procedures. For instance, to gain access to the Form1 Load event procedure.
double-click on the Form1 form in the form designer. Place the following code within each of the abovz
mentioned event procedures:

'Run refresh sub procedure.
RefreshList ()

Retrieving Detailed Information

The ListBoxWeddingList DoubleClick method, not yet created, gets the Id of the selected
item, then populates our forms controls so that the detailed information about the party can be
viewed and modified. Also, the appropriate buttons are enabled and disabled.

If you double-click on the 1istBoxWeddingList control, you will generate the wrong
procedure. To correct this, in the Form1 code window use the upper-left drop box to select
ListBoxWeddingList, then select boubleclick from the drop box on the right:

Insert the following code into the newly generated ListBoxWeddingList DoubleClick event:

'Clears controls
ClearControls ()

btnModify.Enabled = True

btnClear.Enabled = True

btnDelete.Enabled = True

'Pull data for selected item and place in edit controls.
Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objDataSet As DataSet

Dim objSB As New StringBuilder ()

objSB.Append ("<Parties><Party><ID>")
objSB.Append (ListBoxWeddingList.SelectedValue)
o0bjSB.Append ("</ID></Party></Parties>")

objDataSet = obj bll WeddingList.GetPartyListDetail (objSB.ToString)

'Set values of controls

CurrentPartyID = objDataSet.Tables ("PartyListDetail") .Rows (0).Item("ID")
txtParty.Text = objDataSet.Tables ("PartyListDetail") .Rows (0).Item("Party")
txtGuests.Text =

objDataSet.Tables ("PartyListDetail") .Rows (0) .Item("Guests")

Select Case objDataSet.Tables ("PartyListDetail") .Rows (0).Item("GuestOf")

Case "B"
RadioBride.Checked = True
Case "G"
RadioGroom.Checked = True
Case "S"
RadioShared.Checked = True
End Select

Select Case objDataSet.Tables ("PartyListDetail") .Rows (0) .Item("Status")

Case "C"
RadioConfirmed.Checked = True

Case "U"
RadioUnconfirmed.Checked = True
Case "D"
RadioDeclined.Checked = True
End Select

Notice that this procedure first builds an XML string using the StringBuilder class, then
passes that class to the GetpPartyListDetail function. Because all the stored procedures
accept an XML string as the parameter, all the functions will build an XML string before
calling the associated method.

Validation_Party

The only requirement we will enforce, at the presentation level, is a required Party Name. As
a demonstration of the ErrorProvider, you will enforce a rule that states the Party Name
must be provided. The ErrorProvider named ErrorProviderParty is the object that is used
in this example. The following steps will walk you through adding client side validation code:

1. Place the following code within the Form1 class to create both your validation
procedure and Validation Region to aid in the organization of your code:

2 e e e e e e e e e ettt et et e et e e e et e e

3 #Region " Validation "

4.

5. Private Function Validate Party() As Boolean

6

7 If txtParty.Text = "" Then

8 ErrorProviderParty.SetError (txtParty, "Please provide a
Party Name.")

9. Return True

10. Else

11. ' Clear the error.

12. ErrorProviderParty.SetError (txtParty, "")

13. End If

14. End Function

15.

16. #End Region

Lt

18. Add error provider code to the RefreshList () method.

S
20. ' Clear the error.

21. ErrorProviderParty.SetError (txtParty, "")

2 e e e e e ettt ettt et et et et et e et e e

23. Add the following code to the btnClear Click event.

2 e e e e e e e e e e e ettt et e e e et et e ettt et e e e
25. ' Clear the error.
26. ErrorProviderParty.SetError (txtParty, "")

e

28. Add the following code to the first line of the btnModify Click event.

2D e e e e e e e i e e e e e e e e e
30. If Validate Party() Then Exit Sub

Bl e e e e e et et e e e e e e e e e e

e
34. If Validate Party() Then Exit Sub
P

txtParty_KeyPress

Place the following code in the KeyPress event of the txtParty control to enable the add
button as a new party is entered:

'Checking to see if a modification is already occuring.
If btnModify.Enabled = False Then

btnAdd.Enabled = True

btnClear.Enabled = True

btnModify_Click

When all is said and done your XML will look like this:

<Parties>
<Party>
<ID>17</1ID>
<PartyName> Bill O'Reilly</PartyName>
<Guests>3</Guests>
<GuestOf>G</GuestOf>
<Status>C</Status>
</Party>
</Parties>

The btnModi £y click event validates the party name, packs all parameters into an XML
document, and calls the UpdatepParty method of the weddingList.bll WeddingList class.
To create it, add the following code to the btnModify Click event:

If Validate Party() Then Exit Sub

'Modifies the selected record
Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objSB As New StringBuilder ()

objSB.Append
objSB.Append
objSB.Append
objSB.Append

"<Parties><Party>")

"<ID>" & CurrentPartyID & "</ID>")
"<PartyName>" & txtParty.Text & "</PartyName>")
"<Guests>" & txtGuests.Text & "</Guests>")

—~ o~~~

objSB.Append ("<GuestOf>")
If RadioBride.Checked Then objSB.Append("B")
If RadioGroom.Checked Then objSB.Append("G")
If RadioShared.Checked Then objSB.Append("S")
objSB.Append ("</GuestOf>")

objSB.Append ("<Status>")

If RadioConfirmed.Checked Then objSB.Append("C")
If RadioUnconfirmed.Checked Then objSB.Append("U")
If RadioDeclined.Checked Then objSB.Append("D")
objSB.Append ("</Status>")

objSB.Append ("</Party></Parties>")
obj bll WeddingList.UpdateParty (objSB.ToString)

'Clears controls
ClearControls ()

'Run refresh sub procedure.
RefreshlList ()

btnAdd_Click

The Add click event works very similar to btnModify Click procedure by first building an
XML document that represents the new Party and then passing that XML as a string
parameter to the Data Access Layer:

If Validate Party() Then Exit Sub

'Add the new record to the database
Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objSB As New StringBuilder ()

objSB.Append ("<Parties><Party>")
objSB.Append ("<PartyName>" & txtParty.Text & "</PartyName>")
objSB.Append ("<Guests>" & txtGuests.Text & "</Guests>")

objSB.Append ("<GuestOf>")
If RadioBride.Checked Then objSB.Append ("B")
If RadioGroom.Checked Then objSB.Append ("G")
If RadioShared.Checked Then objSB.Append("S")
objSB.Append ("</GuestOf>")

objSB.Append ("<Status>")

If RadioConfirmed.Checked Then objSB.Append ("C")
If RadioUnconfirmed.Checked Then objSB.Append ("U")
If RadioDeclined.Checked Then objSB.Append ("D")

objSB.Append ("</Status>")
objSB.Append ("</Party></Parties>")

obj bll WeddingList.AddParty (objSB.ToString)

'Clears controls
ClearControls ()

'Run refresh sub procedure.
RefreshList ()

btnDelete_Click

This procedure works very similar to the two previous procedures except there is no need for
validation:

'Remove selected items from database.
Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objSB As New StringBuilder ()

objSB.Append ("<Parties><Party>")
o0bjSB.Append ("<ID>" & CurrentPartyID & "</ID>")
objSB.Append ("</Party></Parties>")

obj bll WeddingList.DeleteParty (objSB.ToString)

'Run refresh sub procedure.
RefreshList ()

'Clears controls
ClearControls ()

Why Use XML?

As you learned earlier, you are using XML to pass all the parameters, thereby reducing the
assemblies' interface dependence on parameters. You could take this another step and pass the
stored procedure name, making data access even more generic; however, this would make
access more SQL Server dependent. As things stand right now, to change database platforms,
all you need to do is modify the DAL (Data Access Layer) layer.

Another advantage of using XML is that it allows you to batch process without creating a new
procedure. For instance, you could easily allow multiselect of the list box and then pass the
selected IDs in an XML string to the Delete stored procedure. The Delete stored procedure
would process each item in the XML string until all selected items are deleted. The ability to

process multiple records in a single database call significantly increases performance and
scalability.

Code Review

All of the code in the following section is provided to give you a full view of what your code
should look like. It's important that your current code work properly before you add the
components to COM+. Test your application to ensure that it is working properly. Use the
following code segments to help troubleshoot any problems you may encounter:

'Imports of required namespaces.
Imports System.Data.SglClient
Imports System.Text

Imports System.EnterpriseServices
Imports System.Net

Public Class Forml
Inherits System.Windows.Forms.Form
#Region " Application Behavior "

'Behavior methods.
Dim CurrentPartyID As Integer

Private Sub Forml Load(ByVal sender As System.Object, ByVal e
RefreshlList ()

End Sub

'This is the method used to refresh the Party List.
Private Sub RefreshList ()

'ListBoxWeddingList

Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objDataSet As New DataSet ()

Dim objDataTable As New DataTable ()

Try

objDataSet = obj bll WeddingList.GetPartyList
Catch e As Exception

MessageBox.Show (e.ToString)

Exit Sub
End Try

objDataTable = objDataSet.Tables ("PartyListForListBox")

ListBoxWeddingList.DataSource = objDataTable
ListBoxWeddingList.DisplayMember = "PartyList"
ListBoxWeddingList.ValueMember = "ID"
1blNumberInvited.Text = objDataSet.Tables ("Invited") .Rows (0).Item(0)
1blNumberConfirmed.Text =

objDataSet.Tables ("Confirmed") .Rows (0) .Item(0)

' Clear the error.
ErrorProviderParty.SetError (txtParty, "")

End Sub

Private Sub ClearControls ()
'Clears all text fields and disables selected button controls.
txtParty.Text = ""
txtGuests.Text = ""
RadioBride.Checked = False
RadioGroom.Checked False
RadioShared.Checked = False
RadioConfirmed.Checked = False
RadioUnconfirmed.Checked = False
RadioDeclined.Checked = False
btnDelete.Enabled = False
btnClear.Enabled = False
btnModify.Enabled = False
btnAdd.Enabled = False

End Sub

Private Sub btnClear Click(ByVal sender As System.Object, ByVal
'Clears controls
ClearControls ()
' Clear the error.
ErrorProviderParty.SetError (txtParty,

"")

End Sub
Private Sub btnDelete Click(ByVal sender As System.Object, ByVal

'Remove selected items from database.
Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objSB As New StringBuilder ()

objSB.Append ("<Parties><Party>")
o0bjSB.Append ("<ID>" & CurrentPartyID & "</ID>")
objSB.Append ("</Party></Parties>")

obj bll WeddinglList.DeleteParty(objSB.ToString)

'Run refresh sub procedure.
RefreshList ()

'Clears controls
ClearControls ()

End Sub
Private Sub btnAdd Click(ByVal sender As System.Object, ByVal e
If Validate Party() Then Exit Sub

'Add the new record to the database
Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objSB As New StringBuilder ()

objSB.Append ("<Parties><Party>")
objSB.Append ("<PartyName>" & txtParty.Text & "</PartyName>")
o0bjSB.Append ("<Guests>" & txtGuests.Text & "</Guests>")

objSB.Append ("<GuestOf>")

If RadioBride.Checked Then objSB.Append("B")
If RadioGroom.Checked Then objSB.Append("G")
If RadioShared.Checked Then objSB.Append("S")
objSB.Append ("</GuestOf>")

objSB.Append ("<Status>")

If RadioConfirmed.Checked Then objSB.Append("C")
If RadioUnconfirmed.Checked Then objSB.Append("U")
If RadioDeclined.Checked Then objSB.Append ("D")
objSB.Append ("</Status>")

objSB.Append ("</Party></Parties>")
obj bll WeddingList.AddParty (objSB.ToString)

'Clears controls
ClearControls ()

'Run refresh sub procedure.
RefreshlList ()

End Sub
Private Sub btnModify Click(ByVal sender As System.Object, ByVal e

If Validate Party() Then Exit Sub

'Modifies the selected record

Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objSB As New StringBuilder ()

objSB.Append
objSB.Append
objSB.Append
objSB.Append

"<Parties><Party>")

"<ID>" & CurrentPartyID & "</ID>")
"<PartyName>" & txtParty.Text & "</PartyName>")
"<Guests>" & txtGuests.Text & "</Guests>")

—~ o~~~

objSB.Append ("<GuestOf>")

If RadioBride.Checked Then objSB.Append("B")
If RadioGroom.Checked Then objSB.Append("G")
If RadioShared.Checked Then objSB.Append("S")
objSB.Append ("</GuestOf>")

objSB.Append ("<Status>")

If RadioConfirmed.Checked Then objSB.Append("C")
If RadioUnconfirmed.Checked Then objSB.Append("U")
If RadioDeclined.Checked Then objSB.Append ("D")
objSB.Append ("</Status>")

objSB.Append ("</Party></Parties>")

obj bll WeddingList.UpdateParty (objSB.ToString)

'Clears controls
ClearControls ()

'Run refresh sub procedure.
RefreshlList ()

End Sub
Private Sub btnRefresh Click(ByVal sender As System.Object, ByVal e

'Refresh the list with sorted data from the database
RefreshList ()

'Clears controls

ClearControls ()
End Sub
Private Sub txtParty KeyPress(ByVal sender As Object, ByVal e

'Checking to see if a modification is already occuring.
If btnModify.Enabled = False Then

btnAdd.Enabled = True

btnClear.Enabled = True
End If

End Sub
Private Sub ListBoxWeddingList DoubleClick (ByVal sender As Object,

'Clears controls
ClearControls ()
btnModify.Enabled = True
btnClear.Enabled = True
btnDelete.Enabled = True

'Pull data for selected item and place in edit controls.
Dim obj bll WeddingList As New WeddingList.fac WeddingList ()
Dim objDataSet As DataSet

Dim objSB As New StringBuilder ()

objSB.Append ("<Parties><Party><ID>")
objSB.Append (ListBoxWeddingList.SelectedValue)
objSB.Append ("</ID></Party></Parties>")

objDataSet = obj bll WeddingList.GetPartyListDetail (ocbjSB.ToString)

'Set values of controls
CurrentPartyID =

objDataSet.Tables ("PartyListDetail"”) .Rows (0) .Item("ID")
txtParty.Text =

objDataSet.Tables ("PartyListDetail"”) .Rows (0) .Item("Party")
txtGuests.Text =

objDataSet.Tables ("PartyListDetail") .Rows (0) .Item("Guests")

Select Case objDataSet.Tables ("PartyListDetail") .Rows (0).Item("GuestOf")
Case "B"
RadioBride.Checked
Case "G"
RadioGroom.Checked = True
Case "S"
RadioShared.Checked = True
End Select

True

Select Case objDataSet.Tables ("PartyListDetail") .Rows (0).Item("Status")
Case "C"
RadioConfirmed.Checked = True
Case "U"
RadioUnconfirmed.Checked = True
Case "D"
RadioDeclined.Checked = True
End Select

End Sub

#End Region
#Region " Validation "
Private Function Validate Party() As Boolean

If txtParty.Text = "" Then

ErrorProviderParty.SetError (txtParty,
"Please provide a Party Name.")

Return True

Else
' Clear the error.
ErrorProviderParty.SetError (txtParty, "")

End If

End Function

#End Region
End Class

Enterprise Development

Often, development of an enterprise application requires careful consideration of resource
usage and distribution of processing. The following sections carefully evaluate options that
are available through the .NET Framework.

Connection Pooling

When using ADO.NET, a connection pool is automatically generated in an effort to reuse
database connections that have already been created. Connection pooling may not seem
significant until you realize the enormous resources that are required simply to create a
database connection. You tend to forget this because you are developing the client
(WeddingList.d11, in this case) on the same machine as the one on which your database
resides. When developing locally like this, you eliminate the need and overhead of network
calls and authentication that will be made in a production environment.

It is not uncommon for the time and effort it takes to create a database connection to far
exceed the time required to perform our database transaction. This is where connection
pooling comes in. With connection pooling implemented, a newly created connection is
returned to a connection pool when the client releases it. This allows the next client to use the
connection without having to wait for a new connection, thereby greatly improving the client's
performance by reducing the overhead.

Connection pools are based on the connection string. The connection string serves as a
signature where new connection pools are created or existing pools are used. When a
connection string matches the connection string of an existing connection pool, an available
connection is released to the requesting client. If the new connection string does not match the
connection string or signature of any pool, a new connection pool is created. Therefore,
multiple connection pools are likely to exist within the same application.

But just because connection pooling is automatic doesn't mean that your job is done. You still
need to set the minimum and maximum number of connections in a connection pool.

Unfortunately, there is no simple way to determine your minimum and maximum connection
pool settings because every application is different. For example, if the work your application
performs in any single transaction is far less than the time required to create a new
connection, you should create a few connections in your connection pool, and lower the
maximum connection pool setting so that your requests will not become quoted. (In this case,
a queued request will perform more quickly than if the request was forced to first created its
own connection.)

For example, say you have a small application (around 100 users) with a lot of chatty-type
transactions, whose actual database work is short and sweet. In this case, you may want to
implement a connection pool minimum of 5 and a max of 8 to 10.

Furthermore, most applications will have more than one type of transaction, and many will
have both long and short running ones. This is where the use of multiple connection pools can
become handy.

The minimum and maximum connection pool size are a part of your connection string. When
a different minimum or maximum are specified in the connection, the string no longer
matches the current connection pools and a new pool is created. If you produce too many
connections, you may be defeating the purpose of reusing existing connections. It's
completely up to you as the developer to determine the number of connection pools you
create. Keep in mind that:

o If part of your application performs long running transactions you should be more
concerned with avoiding queuing than with creating new connections. In a case like
this, choose a minimum based on the number of concurrent transactions of this
transaction type and a maximum that will be large enough to accommodate most
transactions without causing queuing.

e For short running transactions, avoid creating new connections. In this case, use a
higher minimum value and a smaller maximum because, as mentioned earlier, queuing
in this scenario is much faster than waiting for a new connection to be created.

When considering the WeddingList example, you can assume that the

XML ModifyDataSource method performs very quickly because you only modify a single
piece of data and return no data. As such, you will set the minimum connection to 1 and
maximum to 3. Consequently, if many requests come in at one time, they will be satisfied
more quickly when connections are pooled (unless the number of requests is exaggerated).

The XML_GetDataSet Connection Pools

The xML_GetDataset method will take slightly longer as data is returned. The performance
difference is nearly immeasurable, but for the sake of argument, you can assume that this is
true. The return time is expected to grow as data increases. Because the return time is only
slightly longer, you will have nearly the same minimum and maximum connection
parameters. In a larger application, you may not want to discriminate between data access
methods whose response times are this close. You'll create two connection pools for this
example, one connection pool that supports the retrieval of data and another connection pool
that modifies the data:

1. Open the WeddingList project.

2. Open the code window for dal DataAccess.vb.

3. Replace the connection string of the XML, ModifyDataSource method with the
following:

It

5. Dim strConn As String =

6. "Data Source=localhost;Initial Catalog=WeddingList" & _

7. ";User Id=sa;Pwd=Enterprise;" & _

8. "Pooling=true;Min Pool Size=1;Max Pool Size=3"

D e e e e e et e et e et e et e e e e et e e e e

L e e e e e e e

12. Dim strConn As String = _

13. "Data Source=localhost;Initial Catalog=WeddingList" & _

14. ";User Id=sa;Pwd=Enterprise;" &

15. "Pooling=true;Min Pool Size=2;Max Pool Size=5"
3

Adding Enterprise Service References

Before you can add your assembly to COM+ in order to take advantage of Enterprise
Services, you need to do a little preparation work. To use COM+ services, you must reference
the EnterprisesServices.d11. To do so, follow these steps:

Open the WeddingList project.

Right-click on References and select Add Reference.

Under the .NET tab scroll until you reach System.EnterpriseServices.
Select System.EnterpriseServices and press select then OK.

b s

Adding Namespaces

To make your job just a little easier you'll import a few namespaces. Import the following
namespaces to the b11 WeddingList, dal WeddingList, and dal DataAccess classes;

Imports System.Data.SglClient

'COM+ Imports

Imports System.EnterpriseServices
Imports System.Runtime.CompilerServices
Imports System.Reflection

Inheriting the Serviced Component Class

To take advantage of ContextUtil, you need to inherit the ServicedComponent class. To do
so, place the servicedComponent inheritance statement after the declaration of the
bll WeddingList, dal WeddingList, and dal DataAccess classes. For example:

Public Class bll WeddingList
Inherits ServicedComponent

Adding Assembly Attributes

The AssemblyInfo.vb file in the WeddingList project holds metadata about your projects
classes. Until now you have provided values for the AssemblyTitle, AssemblyDescription,
AssemblyCompany, and AssemblyProduct. Before you can add Enterprise Services Assembly
attributes, you must import the EnterrpiseServices namespace. Then you will add
assembly attributes that will configure the newly created COM+ application:

1. Open the code window of the AssemblyInfo.vb file of the WeddingList project.
2. Add the new import:

8. 'COM+ Application Name

9. <Assembly: ApplicationName ("WeddingList")>

10. 'COM+ Activation Type (In this case Server which is out-of-process)
11. <Assembly: ApplicationActivation (ActivationOption.Server)>

L e e e e e e et ettt et et e et e e e

Note This is the last thing you need to do for your assembly to take advantage of COM+ Services. By now th
entire file should look like this:

Imports System.Reflection
Imports System.Runtime.InteropServices
Imports System.EnterpriseServices

' General Information about an assembly is controlled through the following
' set of attributes. Change these attribute values to modify the information
' associated with an assembly.

' Review the values of the assembly attributes

<Assembly: AssemblyTitle ("WeddingList")>

<Assembly: AssemblyDescription ("The Wedding List Sample Application.")>
<Assembly: AssemblyCompany ("The Book of Visual Studio .NET")>
<Assembly: AssemblyProduct ("WeddingList")>

<Assembly: AssemblyCopyright ("")>

<Assembly: AssemblyTrademark("")>

<Assembly: CLSCompliant (True)>

' Strong Name public/private key pair.

<Assembly: AssemblyKeyFile ("KeyPair.snk")>

' COM+ Application Name

<Assembly: ApplicationName ("WeddingList") >

' COM+ Activation Type (In this case Server which is out-of-process)

<Assembly: ApplicationActivation (ActivationOption.Server)>

' The following GUID is for the ID of the typelib if this project is exposed to COM

<Assembly: Guid("738266B8-541A-4BO9F-ABD3-91677DEQO7F84") >

Version information for an assembly consists of the following four values:

Major Version
Minor Version
Build Number
Revision

You can specify all the values or you can default the Build and Revision Numbers
by using the '*' as shown below:

<Assembly: AssemblyVersion("1.0.0.1")>

Creating the COM+ Application and Registering our Assembly

Now that you have inherited the servicedComponent, imported the
System.EnterpriseServices, System.Runtime.CompilerServices, and
System.Reflection namespaces, and added the appropriate assembly information, you are
ready to add your assembly to COM+. Of course, before you do this you must create the
COM+ application.

You'll use the regsvcs.exe executable to export your assembly's type library, add your
assembly to an existing COM+ application, and (as determined by the /c switch), create the
COM+ application. To register your assembly with an existing COM+ application, use the
following command:

To create the COM+ application and registration of your assembly with that COM+
application, use the following command:

To create a new COM+ application and register your WeddingList assembly in the new
COM+ application, follow these steps:

R

(&)

Compile the WeddingList project by selecting Rebuild Solution from the Build menu.
Open the Visual Studio .NET Command Prompt.

Navigate to the location of your weddingList.d11.

At the command line, type

Viewing the COM+ Application

Now that you've created the COM+ application, you can view the results using the
Component Services Manager:

1. Select Start * Programs * Administrative Tools * Component Services.
2. Expand MyComputer * COM+ Applications * WeddingList and Components.

Here is where you will view your component's statistics.
Modifying the Client

The windowsFormieddingList client application called our weddingList.d11 as an in-
process assembly. For the client to access the weddingList.d11 assembly, now configured
for Enterprise Services, you must make some minor modifications:

1. Add areference to the Enterpiseservices DLL by right-clicking References, then
Add Reference, and choosing the assembly named system.Enterprise.

Note You must also have a reference to the weddingList.d11 file, but this should
have already been done.

2. Addthe system.EnterpriseServices import statement to the Form1 class:

Object pooling

Object pooling is very similar to connection pooling in that it addresses the time it takes to
perform infrastructure work (object creation and destruction) rather than business processing.
These processes are very time consuming and, like connection pooling, service components
and the application that use them.

NET assemblies don't actually provide object pooling, but configuring assemblies for pooling
tells COM+ to provide object pooling as a service to our assembly. Consequently, your
assembly, loaded and receiving services from COM+, is considered a serviced component.

You indicate to COM+ that your assemblies require services through attributes. To implement
object pooling at the class level, apply the following attributes to each class of the
WeddingList project:

<ObjectPooling (MinPoolsize:=3, MaxPoolsize:=6)>

Next, modify the class declaration for the b11 WeddingList, dal WeddingList, and
dal DataAccess classes with the following object pooling attributes:

e bll WeddingList

° <ObjectPooling (MinPoolsize:=2, MaxPoolSize:=5)>
° Public Class bll WeddingList
o Inherits ServicedComponent

° <ObjectPooling (MinPoolsize:=3, MaxPoolSize:=15)>
o Public Class dal WeddingList
o Inherits ServicedComponent

. <ObjectPooling (MinPoolsize:=2, MaxPoolSize:=6)>
. Public Class dal DataAccess
o Inherits ServicedComponent

Event Tracking

If you compile the assembly and run the windowsForm client application, the assemblies are
pooled. Then, when you open up Component Services found under Administrative Tools, you
will find your COM+ application named WeddingList.

Expand the WeddingList application and select the Components folder (Figure 12-16); your
serviced components are in the right-hand panel. Above the panel are a series of buttons that
offer different views of the components. If you select the button at the far left, you will see
tracking information on the serviced components. This is where you can view the statistics of
serviced components after you have implemented event tracking.

[TTEY
% (o Wroos g | xl®] %]
o pw (= D@ X AR RO D] WA
| [[hguets | dewashed Poked | juial o T)
D kbrgial B wekiong . 0 , ;)
i ssbhbogist ol Datades . U] F L 1
L | o 1 1
2 g
N5t b B
18 [l el
L
5- sl Aggpicate
L —
PN Yl
=R- |
i)
il
Wl w
i 5 | | =

Figure 12-16: Component Services manager.

Event tracking is implemented automatically for classic COM components, but not for .NET
Serviced Components. Event tracking displays statistical information about your assemblies,
such as the number of pooled and active assemblies, as well as the time (in milliseconds) it
takes for an assembly to perform a task.

Note Tracking information is not always necessary and uses extra CPU processing. If you
don't feel a need to track the number of pulled objects or you don't want to spend the
time that the tasks are taking to complete, do not use event tracking.

Implementing Event Tracking

To implement Event Tracking, modify the class declaration for the b11 weddingList,
dal WeddingList, and dal DataAccess classes with the following Event Tracking
attributes:

e Dbll WeddingList

° <ObjectPooling (MinPoolsize:=2, MaxPoolSize:=5),
° EventTrackingEnabled (True)>

o Public Class bll WeddingList

° Inherits ServicedComponent

. <ObjectPooling (MinPoolsize:=3, MaxPoolSize:=15), _
° EventTrackingEnabled (True)>

o Public Class dal WeddingList

o Inherits ServicedComponent

. <ObjectPooling (MinPoolsize:=2, MaxPoolSize:=6),
. EventTrackingEnabled (True)>

. Public Class dal DataAccess
° Inherits ServicedComponent

Just-In-Time Activation (JITA)

Just-In-Time Activation tells COM+ to load the context of components, but not to activate
them until the component's functionality is required. Once the client application is finished,
the component and all of its resources are released, leaving only the object's context in
memory.

You do not need to include JITA when using COM+ Transactional support because JITA is
required for Automatic Transactions. Because JITA does not need to be included with
Automatic Transactions, Synchronization (which allows only a single client to access an
object at one time) is automatically configured as required when JITA is implemented.

JITA components are activated when the client executes one of the class's methods; however,
the client must tell COM+ when it is safe to deactivate the component and return it back to the
pool. This is done using the ContextUtil object and the DeactivateonReturn method.

Your next step is to add the required attributes for implementing JITA. Modify the class
declaration for the b11 WeddingList, dal WeddingList, and dal DataAccess classes with
the following JITA attributes:

bll WeddingList

. <JustInTimeActivation (True),

° ObjectPooling (MinPoolsize:=2, MaxPoolSize:=5),
. EventTrackingEnabled (True)>

o Public Class bll WeddingList

° Inherits ServicedComponent

. <JustInTimeActivation (True),

° ObjectPooling (MinPoolsize:=3, MaxPoolSize:=15),
° EventTrackingEnabled (True)>

° Public Class dal WeddingList

o Inherits ServicedComponent

° <JustInTimeActivation (True), _

. ObjectPooling (MinPoolsize:=2, MaxPoolSize:=6),
° EventTrackingEnabled (True)>

. Public Class dal DataAccess

° Inherits ServicedComponent

Also, to tell COM+ that it is safe to deactivate your assembly, place the following line of code

within each method and before the return statement:

Transactional Support
It's as easy to configure serviced components for transactional support as it is to configure
COM+ services. Furthermore, you can use attributes to configure the transaction level that

you need to support your business process needs.

With the contextUtil object, your component can tell COM+ that a transaction should be

committed or aborted. After adding transactional support to the Addparty, UpdateParty, and

DeleteParty methods of the b11 weddingList class, the component should look something
like this:

<AutoComplete ()>
Public Sub AddParty (ByVal strXML As String)
Dim obj daa WeddingList As New WeddingList.dal WeddingList ()
Try
obj daa WeddingList.AddParty (strXML)
ContextUtil.SetComplete ()
Catch
ContextUtil. SetAbort ()
Exit Try
Finally
ContextUtil.DeactivateOnReturn = True
End Try
' Check for a null resource.
If Not (obj daa WeddingList Is Nothing) Then
obj daa WeddingList.Dispose ()
End If
End Sub

<AutoComplete ()>
Public Sub UpdateParty(ByVal strXML As String)
Dim obj daa WeddingList As New WeddingList.dal WeddingList ()
Try
obj daa WeddingList.UpdateParty (strXML)
ContextUtil.SetComplete ()
Catch
ContextUtil.SetAbort ()
Exit Try
Finally
ContextUtil.DeactivateOnReturn = True
End Try
' Check for a null resource.
If Not (obj daa WeddingList Is Nothing) Then
obj daa WeddingList.Dispose ()

End If
End Sub

<AutoComplete ()>
Public Sub DeleteParty(ByVal strXML As String)
Dim obj daa WeddingList As New WeddingList.dal WeddingList ()
Try
obj daa WeddingList.DeleteParty (strXML)
ContextUtil.SetComplete ()
Catch
ContextUtil.SetAbort ()
Exit Try
Finally
ContextUtil.DeactivateOnReturn = True
End Try
' Check for a null resource.
If Not (obj daa WeddingList Is Nothing) Then
obj daa WeddingList.Dispose ()
End If

Enterprise Services Checklist

Here is a quick and dirty checklist for building the WeddingList assembly to leverage
Enterprise Services. The checklist effectively summarizes what you have already done. Use
this checklist for future reference when creating new Serviced Components:

1. Create a new class library project.
2. Add the appropriate classes and methods.
3. Organize your code using Regions:

B e e e e e e e et ettt e e e e et e e et e e,
5 #Region " Business Level Logic "

6. Public Class MyClass

7 Public Function MyFunction () As DataSet

8 'Do work.

9. End Function

10. End Class

11. #End Region

L e e e e e e e e e e e e e e et ettt e et ettt e et e e,

13. Organize code in the middle tier to perform these specific functions:

o Business Level Logic (BLL) is a component layer whose sole purpose is to
enforce business rules. This layer has no knowledge of the data source.

o Data Access Layer (DAL) is the only layer that has any real knowledge of the
datasource. All database activity is performed by this layer affectively
abstracting the data source from the rest of the application. This promotes code
reuse and database independence as this is the only layer that need to be
modified to work with another database platform.

14. Add the appropriate Imports for your code:

L e e e e e e e e e e e e e e e e e
16. Example: Imports System.Data.SglClient

LT e e e e e et e e e e e e e e e e e

18.
19.
20.
21.

22.
23.

24,
25.

26.

27.
28.

29.
30.

31.

32.
33.

34.
35.
36.
37.

38.

39.
40.

41.
42.
43.
44,
45.

46.
47.

48.

49.
50.

51.

52.

53.
54.
55.

56.
57.

38.
59.

Apply all methods to classes.

Add assembly information to the AssemblyInfo.vb file (especially the version).
Add a Strong Name (sn) file to your project.

If using C#, move the new KeyPair.snk file to the bin directory. If using VB leave it
in the project directory.

Add the Key File assembly attribute to the AssemblyInfo.vb file:

Compile your project to create the strongly named assembly.
Add the new assembly to the Global Assembly Cache (GAC):

Add a reference from the client application to the weddingList.d11.
Configure connection pooling in your connection string:

"Data Source=localhost;Initial Catalog=WeddingList" & _
";User Id=sa;Pwd=;" &
"Pooling=true;Min Pool Size=1;Max Pool Size=3"

Add a reference to the System.EnterrpiseServices.dll.
Add the appropriate Enterprise Services import statements:

'COM+/Enterprise Services Imports
Imports System.EnterpriseServices
Imports System.Runtime.CompilerServices
Imports System.Reflection

Public Class MyClass
Inherits ServicedComponents

Add new Assembly attributes to the AssemblyInfo.vb file supporting Serviced
Components:

' COM+ Application Name

<Assembly: ApplicationName ("WeddingList")>

' COM+ Activation Type (In this case Server which is out-of-
process)

<Assembly: ApplicationActivation (ActivationOption.Server)>

60. regsvcs /c WeddingList
Bl i e e e e e e e e e et e e e e e e e

62. Modify the client to enable use of Serviced Components by adding a reference to the

System.EnterpriseServices assembly and adding the following import statement:
G

64. Imports System.EnterpriseServices
1

T

68. <JustInTimeActivation (True)>

69. <Transaction(TransactionOption.Required)>

70. <ObjectPooling (MinPoolsize:=2, MaxPoolsize:=5)>
71. <EventTrackingEnabled (True) >

Creating a Facade Layer with Web Services

While this lengthy example has demonstrated the implementation of many technologies, it
hasn't demonstrated the flexibility built into your layered model. Currently your visual
Basic .NET application accesses your b11 WeddingList layer directly, which is fine for
applications that reside on the same network or intranet. But what if your application does
not?

As discussed in Chapter 9, "Retrieving Data," you have web services in your arsenal. The
next example will show you how you can simply add a Fagade layer with web services to
WeddingList. Good design early in the application makes it easy to extend your Weddinglist
application.

You'll create a Facade layer with web services, as shown in Figure 12-17. This layer will
contain absolutely no business logic, but will provide extensibility so that your application
will continue to function beyond your local network and across the internet, while functioning
through any firewall on port 80.

Lsai [ron—
WU | s - iy Lo

Chaa g i fpp
1 I
DBusirigss Liva |l Linger (BLLY Fagade FAZ)
o Wddngli
W gL

k. dal Weridrglim
dul Db p

Source \h]
II\"“Q:::‘..//JI

Figure 12-17: The logical view of the model with web services.

i F]
i

The physical view of this the WeddingList application with web services is shown in Figure
12-18. Most firewalls secure their networks by closing TCP/IP ports that are not used for web
browsing. This includes many ports used by RPC protocols such as DCOM and CORBA,
which are used to allow remote clients access to distributed applications. Your application,
using web services, communicates across port 80 that is used for web access, allowing client
applications easier access to web applications. Figure 12-18 shows a remote client application
gaining access to your Serviced Components, hosted in COM+, through a firewall.

Figure 12-18: The physical view of the model with web services.

The first step in extending the WeddingList application beyond the local network is to create a
web services project. Your web services are responsible for accepting the same parameters the
bll WeddingList assembly is expecting, then returning the same. In this scenario, the web
service participates as a Facade layer component level, effectively passing all requests
through to lower layers.

Note Web services can participate in applications to a much larger degree than the Facade
layer. This is simply how you are implementing web services in the WeddingList

application.

Creating the Web Service Fagade

To create the web service Facade layer, follow these steps:

SEICESEES

[e)}

2o

11.
12.

13.

0.

Create a new Visual Basic .NET Project using the ASP.NET Web Service template.
Change the project Location to http://localhost/ws_WeddingList.

Rename the servicel.asmx file to fac WeddingList.asmx.

Open the code window for WeddingList.asmx:

Add a reference to the EnterpriseServices.dll.
Add the system.EnterpriseServices imports statement:

Add a reference to the weddingList assembly. You will need to select browse and
navigate to the weddingList.d11 and press OK.

Adding Web Methods

At this point, the web service is correctly configured and ready for you to add your pass-
through web methods. Start by adding the GetpPartyList method and then test it. If all goes
well, you can continue to add a web method for each method in the b11 weddingList class:

Open the fac_weddingList code window and replace the commended web method
that demonstrates the He11lowor1d method with the following code:

<WebMethod () > Public Function GetPartyList () As DataSet
Dim objbll WeddingList As New WeddingList.bll WeddingList ()
Dim objDataSet As DataSet
objDataSet = objbll WeddingList.GetPartyList
' Check for a null resource.
If Not (objbll WeddingList Is Nothing) Then
objbll WeddingList.Dispose ()
End If
Return objDataSet
End Function

14. Let's go ahead and test our new web method. Press F5 and a browser pointing to the

fac WeddingList.asmx file loads (Figure 12-19).

i'a. vl bl #Tul S owicn - Wicoinarld b S Lagiener gl Iy Comspoy

N e e R
Qra - Q8 @@ Owes Frrees @ @S- 506 0@
LELE B oagPuotlen et o wi o e el el = Bl s ™

fac_WeddingList

b Beare o @ o el com o

CatPartyList
Timd

¥ mad ches dialins e th TR (T povmnand, ik T Tawais’ heman
Prosta

SOAP
Thad il oongeg 8 8 Lhwcdy TOAF 100ttt i i ol Took plar s Balde e 1% o0 rovid T0 b reodimieed s Bor 8wl

TOAT fwrs_Wesdamglazs/ fac_Trddi nglist. nome NTTRSL. 1
Eazta kch

Corhent-Tyger texcfamly oheresiem g
foraaptolesgih: lemgih

1EFACLon TWitgodS cempar oo Get Peet phaet "

A7 FEEELEAS L, T ERAMABFETWIE-ET IR
ASBAE LAV IESE Wil NS IS THLLH S e, WD G0RT 000 1 INLSE e I B ADSET WA NSO TR L e e Y
»

!
| L [

Figure 12-19: Generated test screen for the GetPartyList web method.

15. Select the GetPartyList bulleted list item.
16. Since there are no required parameters simply press the Invoke button.

Note If everything is working correctly, another browser will open, displaying the
XML that represents the returned dataset (Figure 12-20).

wiai -2 - D) D Bar et ot 3 D-DFH-D8
| ngreas [] btp: v st fus_encrdrgintifac ek e mie Niet¥tat el at ¢ =] e
s element neame="Calumnl® type="xs:int" =
mindeours="0" [

s SEQuUBTICE >
i icorphsT ypes
2 EAR AR
<fugichocos
cfigicompleaTypes
£hvm: glomont >
ciuEEcheman
= crliffye: ffgram smise madstas "wmsschemas - milenosoft - o m:xml -
mscala® wrlrg g = um chn it =micro L oft=comn smi=-dE gram-
vl's
= cHmsCataset wrinse® s
- «fartylistForbstion dtfgr d="PartyListForlistBox1”
TadRrA W Orte ="
LIC=m< A0
chartyliztAnnetic Rettor 2 Shared
Confirrredo /P lylel>
Mg tyListForLiztBous
- aFartylistForbstion dffor c="PatyListForlist Box®”
msdal arowOrder="1">
B T B Ry i
aRar bylis LBl O"Ruilly 2 Shared Unoonfiormed < Fartylis e
SPartyL It oL sthaxs
aParyListForiistios dify ce"ParyListForUlstBong”
migdatarcwOrde s> =l

&) nore =1 glnm I
Figure 12-20: Results of the GetpartyList web method test.

17. Go ahead and add the necessary code for the rest of this class:
e
19. <WebMethod()> Public Function GetPartyListDetail (_

20. ByVal strXML As String) As DataSet

21. Dim objbll WeddingList As New WeddingList.bll WeddingList ()
22. Dim objDataSet As DataSet

23. objDataSet = objbll WeddingList.GetPartyListDetail (strXML)
24. If Not (objbll WeddingList Is Nothing) Then

25. objbll WeddingList.Dispose ()

26. End If

27. Return objDataSet

28. 'Use for testing

29. '<Parties>

30. ' <Party>

31. ' <ID>1</ID>

32. ' </Party>

33. '</Parties>

34. End Function

35.

36. <WebMethod () > Public Sub AddParty (ByVal strXML As String)
37. Dim objbll WeddingList As New WeddingList.bll WeddingList ()
38. objbll WeddingList.AddParty (strXML)

39. If Not (objbll WeddingList Is Nothing) Then

40. objbll WeddingList.Dispose ()

41. End If

42 '<Parties>

43. ' <Party>

44 . ' <PartyName></PartyName>

45. ' <Guests></Guests>

46. ' <GuestOf></GuestOf>

47 . ' <Status></Status>

48. ' </Party>

49. '</Parties>

50. End Sub

51.

52. <WebMethod () > Public Sub DeleteParty(ByVal strXML As String)
53. Dim objbll WeddingList As New WeddingList.bll WeddingList ()
54. objbll WeddingList.DeleteParty (strXML)

55. If Not (objbll WeddingList Is Nothing) Then

56. objbll WeddingList.Dispose ()

57. End If

58. '<Parties>

59. ' <Party>

60. ' <ID></ID>

61. ' </Party>

62. '</Parties>

63. End Sub

64.

65. <WebMethod () > Public Sub UpdateParty (ByVal strXML As String)
66. Dim objbll WeddingList As New WeddingList.bll WeddingList ()
67. objbll WeddingList.UpdateParty (strXML)

68. If Not (objbll WeddingList Is Nothing) Then

69. objbll WeddingList.Dispose ()

70. End If

71. '<Parties>

72. ' <Party>

73. ' <ID></ID>

74. ' <PartyName></PartyName>

75. ' <Guests></Guests>

76. ' <GuestOf></GuestOf>

77. ' <Status></Status>

78. ' </Party>

79. '</Parties>

80. End Sub

Bl e i e e e e e e e e e et e e et et e

82. Press F5 and a new browser listing all the available methods will open. Feel free to
select each method and test them.

Note Where parameters are required, you will need to provide the appropriate XML string
that the clients pass or the method will fail.

Reconfiguring the Client for Web Services

As you have architected this solution for extensibility, all you need to do in the client is
change its references and make a few minor adjustments:

Open the WindowsFormWeddingList project.

Expand the References folder in the Solutions Explorer.

Right-click on WeddingList and select Remove.

Right-click on References and select Add Web Reference.

Place the following Address in the Address list box and press Enter:

ok W —

®
o
t
t
o]
~
~
}_l
(@]
Q
Y}
}_l
o
(@]
n
o
~
=
lm
=
D
Q.
Q.
o
ol
Q
=
s
)
o
~
H
©
lO
=
D
Q.
Q.
o
ol
Q
=
-
)
o
©
n
3
w

9. Press the Add Reference button.

10. Expand the Web References folder. Right click on localhost and rename it
WeddingList.

Note If you named the fac weddingList class of the Web Service
bll WeddingList, no other changes to the client will be required.

11. Review the windowsFormieddingList project code and replace all references to
bll WeddingList With fac WeddingList.

12. Rebuild the project by selecting Rebuild Solution from the Build menu.

13. Press F5 to run the application.

Typically, you could go ahead and deploy your application; however, you made a reference to
your web services using localhost as your machine's name:

To distribute the client, you must reference the actual machine name or IP address of the web
server, exposing your web service like this:

http://192.168.1.1/ws_WeddingList/fac WeddingList.asmx

Where Do You Go from Here?

If you've made it this far, you should have a good understanding of Visual Studio .NET and at
least possess a basic understanding of a host of .NET Framework technologies. Your next step
should be to focus on each of these technologies, either by investigating MSDN further,
studying books that specialize in specific technologies such as ADO.NET or ASP.NET, or
simply building your own applications.

Learning how to program using the .NET Framework is an enormous task. I hope this book
has helped you understand the .NET Framework, Visual Studio .NET, and associated
technologies. Best wishes!

